Skip to main content

Advertisement

Log in

Interactions of GST Polymorphisms in Air Pollution Exposure and Respiratory Diseases and Allergies

  • Allergies and the Environment (M Hernandez, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to summarize the evidence from recently published original studies investigating how glutathione S-transferase (GST) gene polymorphisms modify the impact of air pollution on asthma, allergic diseases, and lung function.

Recent Findings

Current studies in epidemiological and controlled human experiments found evidence to suggest that GSTs modify the impact of air pollution exposure on respiratory diseases and allergies. Of the nine articles included in this review, all except one identified at least one significant interaction with at least one of glutathione S-transferase pi 1 (GSTP1), glutathione S-transferase mu 1 (GSTM1), or glutathione S-transferase theta 1 (GSTT1) genes and air pollution exposure. The findings of these studies, however, are markedly different. This difference can be partially explained by regional variation in the exposure levels and oxidative potential of different pollutants and by other interactions involving a number of unaccounted environment exposures and multiple genes.

Summary

Although there is evidence of an interaction between GST genes and air pollution exposure for the risk of respiratory disease and allergies, results are not concordant. Further investigations are needed to explore the reasons behind the discordancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Xing Y-F, Xu Y-H, Shi M-H, Lian Y-X. The impact of PM2.5 on the human respiratory system. J Thorac Dis. 2016;8(1):E69–74. doi:10.3978/j.issn.2072-1439.2016.01.19.

    PubMed  PubMed Central  Google Scholar 

  2. Last JA, Sun WM, Witschi H. Ozone, NO, and NO2: oxidant air pollutants and more. Environ Health Perspect. 1994;102 Suppl 10:179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nawrot TS, Kuenzli N, Sunyer J, Shi T, Moreno T, Viana M, et al. Oxidative properties of ambient PM2.5 and elemental composition: heterogeneous associations in 19 European cities. Atmos Environ. 2009;43(30):4595–602. doi:10.1016/j.atmosenv.2009.06.010.

  4. Velsor LW, Postlethwait EM. NO2-induced generation of extracellular reactive oxygen is mediated by epithelial lining layer antioxidants. Am J Physiol. 1997;273(6 Pt 1):L1265–75.

    CAS  PubMed  Google Scholar 

  5. •• Carlsten C, Blomberg A, Pui M, Sandstrom T, Wong SW, Alexis N, et al. Diesel exhaust augments allergen-induced lower airway inflammation in allergic individuals: a controlled human exposure study. Thorax. 2016;71(1):35–44. doi:10.1136/thoraxjnl-2015-207399. This controlled human exposure study demonstrated that exposure to diesel exhaust augments allergen-induced lower airway inflammation in allergic individuals with GSTT1 null polymorphism.

    Article  PubMed  Google Scholar 

  6. Olivieri D, Scoditti E. Impact of environmental factors on lung defences. Eur Respir Rev. 2005;14(95):51–6.

    Article  Google Scholar 

  7. Gilliland FD, Li Y-F, Saxon A, Diaz-Sanchez D. Effect of glutathione-S-transferase M1 and P1 genotypes on xenobiotic enhancement of allergic responses: randomised, placebo-controlled crossover study. Lancet. 2004;363(9403):119–25. doi:10.1016/S0140-6736(03)15262-2.

    Article  CAS  PubMed  Google Scholar 

  8. Chen E, Schreier HM, Strunk RC, Brauer M. Chronic traffic-related air pollution and stress interact to predict biologic and clinical outcomes in asthma. Environ Health Perspect. 2008;116(7):970–5. doi:10.1289/ehp.11076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gordian ME, Haneuse S, Wakefield J. An investigation of the association between traffic exposure and the diagnosis of asthma in children. J Expo Sci Environ Epidemiol. 2006;16(1):49–55. doi:10.1038/sj.jea.7500436.

    Article  CAS  PubMed  Google Scholar 

  10. Sienra-Monge JJ, Ramirez-Aguilar M, Moreno-Macias H, Reyes-Ruiz NI, Del Rio-Navarro BE, Ruiz-Navarro MX, et al. Antioxidant supplementation and nasal inflammatory responses among young asthmatics exposed to high levels of ozone. Clin Exp Immunol. 2004;138(2):317–22. doi:10.1111/j.1365-2249.2004.02606.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Allen RG, Tresini M. Oxidative stress and gene regulation. Free Radic Biol Med. 2000;28(3):463–99. doi:10.1016/S0891-5849(99)00242-7.

  12. Weiss ST. Lung function and airway diseases. Nat Genet. 2010;42(1):14–6.

    Article  CAS  PubMed  Google Scholar 

  13. Strange RC, Spiteri MA, Ramachandran S, Fryer AA. Glutathione-S-transferase family of enzymes. Mutat Res. 2001;482(1–2):21–6. doi:10.1016/S0027-5107(01)00206-8.

  14. Hayes JD, Strange RC. Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology. 2000;61(3):154–66. doi:10.1159/000028396.

  15. Piacentini S, Polimanti R, Simonelli I, Donno S, Pasqualetti P, Manfellotto D, et al. Glutathione S-transferase polymorphisms, asthma susceptibility and confounding variables: a meta-analysis. Mol Biol Rep. 2013;40(4):3299–313. doi:10.1007/s11033-012-2405-2.

    Article  CAS  PubMed  Google Scholar 

  16. Romieu I, Moreno-Macias H, London SJ. Gene by environment interaction and ambient air pollution. Proc Am Thorac Soc. 2010;7(2):116–22. doi:10.1513/pats.200909-097RM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Holloway JW, Savarimuthu Francis S, Fong KM, Yang IA. Genomics and the respiratory effects of air pollution exposure. Respirology. 2012;17(4):590–600. doi:10.1111/j.1440-1843.2012.02164.x.

    Article  PubMed  Google Scholar 

  18. Hosgood Iii HD, Berndt SI, Lan Q. GST genotypes and lung cancer susceptibility in Asian populations with indoor air pollution exposures: A meta-analysis. Mutat Res. 2007;636(1–3):134–43. doi:10.1016/j.mrrev.2007.02.002.

  19. •• Minelli C, Wei I, Sagoo G, Jarvis D, Shaheen S, Burney P. Interactive effects of antioxidant genes and air pollution on respiratory function and airway disease: a HuGE review. Am J Epidemiol. 2011;173(6):603–20. doi:10.1093/aje/kwq403. Systematic review that synthesized evidence based on literature published until 2009 related to interactions of oxidative stress gene polymorphisms on air pollution exposure and airway diseases.

    Article  PubMed  Google Scholar 

  20. Kellen E, Hemelt M, Broberg K, Golka K, Kristensen VN, Hung RJ, et al. Pooled analysis and meta-analysis of the glutathione S-transferase P1 Ile 105Val polymorphism and bladder cancer: a HuGE-GSEC review. Am J Epidemiol. 2007;165(11):1221–30. doi:10.1093/aje/kwm003.

    Article  PubMed  Google Scholar 

  21. •• Curjuric I, Imboden M, Schindler C, Downs SH, Hersberger M, Liu SLJ, et al. HMOX1 and GST variants modify attenuation of FEF25-75% decline due to PM10 reduction. Eur Respir J. 2009;35(3):505–14. doi:10.1183/09031936.000443-2009. Using data from a longitudinal cohort, this study demonstrated the effects of reduced PM 10 over 11 years on lung function change in relation to GST polymorphisms.

  22. Fuertes E, Brauer M, MacIntyre E, Bauer M, Bellander T, von Berg A, et al. Childhood allergic rhinitis, traffic-related air pollution, and variability in the GSTP1, TNF, TLR2, and TLR4 genes: results from the TAG Study. J Allergy Clin Immunol. 2013;132(2):342-52.e2. doi:10.1016/j.jaci.2013.03.007.

    Article  PubMed  Google Scholar 

  23. •• MacIntyre EA, Brauer M, Melen E, Bauer CP, Bauer M, Berdel D, et al. GSTP1 and TNF Gene variants and associations between air pollution and incident childhood asthma: the traffic, asthma and genetics (TAG) study. Environ Health Perspect. 2014;122(4):418–24. doi:10.1289/ehp.1307459. Combining six birth cohort studies and using advanced air pollution modeling, this study demonstrated how early life exposure to air pollutants is modified by GST polymorphisms.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hwang B-F, Young L-H, Tsai C-H, Tung K-Y, Wang P-C, Su M-W, et al. Fine particle, ozone exposure, and asthma/wheezing: effect modification by glutathione S-transferase P1 polymorphisms. PLoS One. 2013;8(1):e52715. doi:10.1371/journal.pone.0052715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. • Su MW, Tsai CH, Tung KY, Hwang BF, Liang PH, Chiang BL, et al. GSTP1 is a hub gene for gene-air pollution interactions on childhood asthma. Allergy. 2013;68(12):1614–7. doi:10.1111/all.12298. This study reported the effects of differential exposure levels of PM 10 on childhood asthma in children with GSTP1 polymorphism.

  26. Bowatte G, Lodge CJ, Knibbs LD, Lowe AJ, Erbas B, Dennekamp M, et al. Traffic-related air pollution exposure is associated with allergic sensitization, asthma, and poor lung function in middle age. J Allergy Clin Immunol. 2016. doi:10.1016/j.jaci.2016.05.008.

    PubMed  Google Scholar 

  27. Chen B-Y, Chen C-H, Chuang Y-C, Kim H, Honda Y, Chiang H-C, et al. Schoolchildren’s antioxidation genotypes are susceptible factors for reduced lung function and airway inflammation caused by air pollution. Environ Res. 2016;149:145–50. doi:10.1016/j.envres.2016.05.007.

    Article  CAS  PubMed  Google Scholar 

  28. Reddy P, Naidoo RN, Robins TG, Mentz G, Li H, London SJ, et al. GSTM1 and GSTP1 gene variants and the effect of air pollutants on lung function measures in South African children. Am J Ind Med. 2012;55(12):1078–86. doi:10.1002/ajim.22012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. • Bowatte G, Lodge CJ, Lowe AJ, Erbas B, Dennekamp M, Marks GB, et al. Do variants in GSTs modify the association between traffic air pollution and asthma in adolescence? Int J Mol Sci. 2016;17(4):485. doi:10.3390/ijms17040485. First epidemiological study to report the significant effects of GSTT1 polymorphisms for the association of air pollution exposure and asthma/wheeze.

    Article  PubMed  PubMed Central  Google Scholar 

  30. MacIntyre EA, Carlsten C, MacNutt M, Fuertes E, Melen E, Tiesler CMT, et al. Traffic, asthma and genetics: combining international birth cohort data to examine genetics as a mediator of traffic-related air pollution’s impact on childhood asthma. Eur J Epidemiol. 2013;28(7):597–606. doi:10.1007/s10654-013-9828-5.

    Article  CAS  PubMed  Google Scholar 

  31. Mainwaring GW, Williams SM, Foster JR, Tugwood J, Green T. The distribution of theta-class glutathione S-transferases in the liver and lung of mouse, rat and human. Biochem J. 1996;318(Pt 1):297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Raimondi S, Paracchini V, Autrup H, Barros-Dios JM, Benhamou S, Boffetta P, et al. Meta- and pooled analysis of GSTT1 and lung cancer: a HuGE-GSEC review. Am J Epidemiol. 2006;164(11):1027–42. doi:10.1093/aje/kwj321.

    Article  CAS  PubMed  Google Scholar 

  33. Yang F, Xiong J, Jia X-E, Gu Z-H, Shi J-Y, Zhao Y, et al. GSTT1 deletion is related to polycyclic aromatic hydrocarbons-induced DNA damage and lymphoma progression. PLoS One. 2014;9(2):e89302. doi:10.1371/journal.pone.0089302.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang X, Hirota JA, Yang C, Carlsten C. Effect of GST variants on lung function following diesel exhaust and allergen co-exposure in a controlled human crossover study. Free Radic Biol Med. 2016;96:385–91. doi:10.1016/j.freeradbiomed.2016.04.202.

    Article  CAS  PubMed  Google Scholar 

  35. Madden MC, Stevens T, Case M, Schmitt M, Diaz-Sanchez D, Bassett M, et al. Diesel exhaust modulates ozone-induced lung function decrements in healthy human volunteers. Part Fibre Toxicol. 2014;11(1):1–10. doi:10.1186/s12989-014-0037-5.

    Article  Google Scholar 

  36. Calderón-Garcidueñas L, Rodríguez-Alcaraz A, Villarreal-Calderón A, Lyght O, Janszen D, Morgan KT. Nasal epithelium as a sentinel for airborne environmental pollution. Toxicol Sci. 1998;46(2):352–64. doi:10.1093/toxsci/46.2.352.

    Article  PubMed  Google Scholar 

  37. Shusterman D. The effects of air pollutants and irritants on the upper airway. Proc Am Thorac Soc. 2011;8(1):101–5. doi:10.1513/pats.201003-027RN.

    Article  CAS  PubMed  Google Scholar 

  38. Gowers AM, Cullinan P, Ayres JG, Anderson HR, Strachan DP, Holgate ST, et al. Does outdoor air pollution induce new cases of asthma? Biological plausibility and evidence; a review. Respirology. 2012;17(6):887–98. doi:10.1111/j.1440-1843.2012.02195.x.

    Article  PubMed  Google Scholar 

  39. Guarnieri M, Balmes JR. Outdoor air pollution and asthma. Lancet. 2014;383(9928):1581–92. doi:10.1016/s0140-6736(14)60617-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang SK, Zhang Q, Qiu Z, Chung KF. Mechanistic impact of outdoor air pollution on asthma and allergic diseases. J Thorac Dis. 2015;7(1):23–33. doi:10.3978/j.issn.2072-1439.2014.12.13.

    PubMed  PubMed Central  Google Scholar 

  41. Bowler RP, Crapo JD. Oxidative stress in allergic respiratory diseases. J Allergy Clin Immunol. 2002;110(3):349–56. doi:10.1067/mai.2002.126780.

    Article  CAS  PubMed  Google Scholar 

  42. Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol. 2005;45:51–88. doi:10.1146/annurev.pharmtox.45.120403.095857.

    Article  CAS  PubMed  Google Scholar 

  43. Kelly F. Oxidative stress: its role in air pollution and adverse health effects. Occup Environ Med. 2003;60(8):612–6.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rahman K. Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging. 2007;2(2):219–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Holguin F. Oxidative stress in airway diseases. Ann Am Thorac Soc. 2013;10(Suppl):S150–7. doi:10.1513/AnnalsATS.201305-116AW.

    Article  PubMed  Google Scholar 

  46. Rahman I, MacNee W. Oxidative stress and regulation of glutathione in lung inflammation. Eur Respir J. 2000;16(3):534–54.

    Article  CAS  PubMed  Google Scholar 

  47. Lodovici M, Bigagli E. Oxidative stress and air pollution exposure. J Toxicol. 2011;2011:487074. doi:10.1155/2011/487074.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Brauer M. How much, how long, what, and where: air pollution exposure assessment for epidemiologic studies of respiratory disease. Proc Am Thorac Soc. 2010;7(2):111–5.

    Article  PubMed  Google Scholar 

  49. Künzli N, Mudway IS, Götschi T, Shi T, Kelly FJ, Cook S, et al. Comparison of oxidative properties, light absorbance, and total and elemental mass concentration of ambient PM(2.5) collected at 20 European sites. Environ Health Perspect. 2006;114(5):684–90. doi:10.1289/ehp.8584.

    Article  PubMed  Google Scholar 

  50. Smith PG, Day NE. The design of case-control studies: the influence of confounding and interaction effects. Int J Epidemiol. 1984;13(3):356–65.

    Article  CAS  PubMed  Google Scholar 

  51. Weichenthal SA, Lavigne E, Evans GJ, Godri Pollitt KJ, Burnett RT. Fine particulate matter and emergency room visits for respiratory illness. Effect modification by oxidative potential. Am J Respir Crit Care Med. 2016;194(5):577–86. doi:10.1164/rccm.201512-2434OC.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gayan Bowatte.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

The two studies that the authors are part of are approved by the Human Research Ethics Committee at the University of Melbourne (Human Research Ethics Committee No. 040375), Mercy Maternity Hospital Ethics Committee (HREC nos. R07/20 and R88/06), and Royal Children’s Ethics Committee (HREC: 28035). All the participants in these two studies provided written informed consent.

Additional information

Melanie C. Matheson, and Shyamali C. Dharmage are equal senior authors.

This article is part of the Topical Collection on Allergies and the Environment

Melanie C. Matheson and Shyamali C. Dharmage contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bowatte, G., Lodge, C.J., Perret, J.L. et al. Interactions of GST Polymorphisms in Air Pollution Exposure and Respiratory Diseases and Allergies. Curr Allergy Asthma Rep 16, 85 (2016). https://doi.org/10.1007/s11882-016-0664-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-016-0664-z

Keywords

Navigation