Skip to main content

Advertisement

Log in

Do Glutathione S-Transferase Genes Modify the Link between Indoor Air Pollution and Asthma, Allergies, and Lung Function? A Systematic Review

  • Allergies and the Environment (M Hernandez, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Glutathione S-transferase (GST) genes are involved in oxidative stress management and may modify the impact of indoor air pollution. We aimed to assess the influence of GST genes on the relationship between indoor air pollution and allergy/lung function.

Recent Findings

Our systematic review identified 22 eligible studies, with 15 supporting a gene-environment interaction. Carriers of GSTM1/T1 null and GSTP1 val genotypes were more susceptible to indoor air pollution exposures, having a higher risk of asthma and lung function deficits. However, findings differed in terms of risk alleles and specific exposures. High-exposure heterogeneity precluded meta-analysis.

Summary

We found evidence that respiratory effects of indoor air pollution depend on the individual’s GST profile. This may help explain the inconsistent associations found when gene-environment interactions are not considered. Future studies should aim to improve the accuracy of pollution assessment and investigate this finding in different populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AD:

Atopic dermatitis

CI:

Confidence interval

ETS:

Environmental tobacco smoke

FEV1 :

Forced expiratory volume in 1 s

FVC:

Forced vital capacity

GSTs:

Glutathione s-transferases

VFRCmax :

Maximal flow at functional residual capacity

NOS:

Newcastle-Ottawa quality assessment scale

OR:

Odds ratio

PEFR:

Peak expiratory flow rate

NQO1:

Quinone oxidoreductase-1

ROS:

Reactive oxygen species

SES:

Socio-economic status

SE:

Standard error

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Weinberg EG. The WAO White Book on Allergy

  2. Aarif S, Al-Mohammed A. Allergic rhinitis and asthma: the global burden. Int Jd Stud Res. 2015;5(1):1. https://doi.org/10.4103/2230-7095.180072.

    Article  Google Scholar 

  3. van Schayck OCP. Global strategies for reducing the burden from asthma. Prim Care Respir J. 2013;22(2):239–43. https://doi.org/10.4104/pcrj.2013.00052.

    Article  PubMed  Google Scholar 

  4. Pearce N, Aït-Khaled N, Beasley R, Mallol J, Keil U, Mitchell E, et al. Worldwide trends in the prevalence of asthma symptoms: phase III of the International Study of Asthma and Allergies in Childhood (ISAAC). Thorax. 2007;62(9):758–66. https://doi.org/10.1136/thx.2006.070169.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hersoug L-G, Brasch-Andersen C, Husemoen LLN, Sigsgaard T, Linneberg A. The relationship of glutathione-S-transferases copy number variation and indoor air pollution to symptoms and markers of respiratory disease. Clin Respir J. 2012;6(3):175–85. https://doi.org/10.1111/j.1752-699X.2011.00258.x.

    Article  PubMed  Google Scholar 

  6. Tager IB. CME Article: The effects of second-hand and direct exposure to tobacco smoke on asthma and lung function in adolescence. Paediatr Respir Rev. 2008;9(1):29–38. https://doi.org/10.1016/j.prrv.2007.11.006.

    Article  PubMed  Google Scholar 

  7. Gilliland FD, Berhane K, Yu-Fen L, Rappaport EB, Peters JM. Effects of early onset asthma and in utero exposure to maternal smoking on childhood lung function. Am J Respir Crit Care Med. 2003;167(6):917–24. https://doi.org/10.1164/rccm.200206-616OC.

    Article  PubMed  Google Scholar 

  8. Lim FL, Hashim Z, LTL T, Md Said S, Hisham Hashim J, Norbäck D. Asthma, airway symptoms and rhinitis in office workers in Malaysia: associations with house dust mite (HDM) allergy, cat allergy and levels of house dust mite allergens in office dust. PLoS One. 2015;10(4):1–21. https://doi.org/10.1371/journal.pone.0124905.

    Google Scholar 

  9. Bjerg A, Ronmark EP, Hagstad S, Eriksson J, Andersson M, Wennergren G, et al. Gas, dust, and fumes exposure is associated with mite sensitization and with asthma in mite-sensitized adults. Allergy. 2015;70(5):604–7. https://doi.org/10.1111/all.12584.

    Article  CAS  PubMed  Google Scholar 

  10. KilpelÄInen M, Koskenvuo M, Helenius H, Terho E. Regular Article: Wood stove heating, asthma and allergies. Respir Med. 2001;95(11):911–6. https://doi.org/10.1053/rmed.2001.1175.

    Article  PubMed  Google Scholar 

  11. Magnusson LL, Olesen AB, Wennborg H, Olsen J. Wheezing, asthma, hayfever, and atopic eczema in childhood following exposure to tobacco smoke in fetal life. Clin Exp Allergy. 2005;35(12):1550–6.

    Article  CAS  PubMed  Google Scholar 

  12. Carlsten C, Brauer M, Dimich-Ward H, Dybuncio A, Becker AB, Chan-Yeung M. Combined exposure to dog and indoor pollution: incident asthma in a high-risk birth cohort. Eur Respir J. 2011;37(2):324–30. https://doi.org/10.1183/09031936.00187609.

    Article  CAS  PubMed  Google Scholar 

  13. Ferdous AJ, Ahmed SAA. Biochemical study and gene expression of Glutathione-S-Transferase (GST)in induced asthma in Rat. Orient J Chem. 2015;31(3):1587–94. https://doi.org/10.13005/ojc/310337.

    Article  Google Scholar 

  14. Hoskins A, Wu P, Reiss S, Dworski R. Glutathione S-transferase P1 Ile105Val polymorphism modulates allergen-induced airway inflammation in human atopic asthmatics in vivo. Clin Exp Allergy. 2013;43(5):527–34. https://doi.org/10.1111/cea.12086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sheehan D, Meade G, Foley VM, Dowd CA. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J. 2001;360(Pt 1):1–16. https://doi.org/10.1042/bj3600001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. • Minelli C, Wei I, Sagoo G, Jarvis D, Shaheen S, Burney P. Interactive effects of antioxidant genes and air pollution on respiratory function and airway disease: a HuGE review. 2011;603. The previous review on similar topic.

  17. Hanene C, Jihene L, Jamel A, Kamel H, Agnés H. Association of GST genes polymorphisms with asthma in Tunisian children. Mediat Inflamm. 2007;2007:1):1–6. https://doi.org/10.1155/2007/19564.

    Article  Google Scholar 

  18. Ckless K, Hodgkins SR, Ather JL, Martin R, Poynter ME. Epithelial, dendritic, and CD4+ T cell regulation of and by reactive oxygen and nitrogen species in allergic sensitization. Biochim Biophys Acta Gen Subj. 2011;1810(11):1025–34. https://doi.org/10.1016/j.bbagen.2011.03.005.

    Article  CAS  Google Scholar 

  19. Fryer AA, Bianco A, Hepple M, Jones PW, Strange RC, Spiteri MA. Polymorphism at the glutathione S-transferase GSTP1 locus. A new marker for bronchial hyperresponsiveness and asthma. Am J Respir Crit Care Med. 2000;161(5):1437–42. https://doi.org/10.1164/ajrccm.161.5.9903006.

    Article  CAS  PubMed  Google Scholar 

  20. Barnes PJ. Reactive oxygen species and airway inflammation. Free Radic Biol Med. 1990;9(3):235–43. https://doi.org/10.1016/0891-5849(90)90034-G.

    Article  CAS  PubMed  Google Scholar 

  21. Babusikova E, Jesenak M, Kirschnerova R, Banovcin P, Dobrota D. Association of oxidative stress and GST-T1 gene with childhood bronchial asthma. J Physiol Pharmacol. 2009;60(Suppl 5):27–30.

    PubMed  Google Scholar 

  22. Shaheen SO, Newson RB, Ring SM, Rose-Zerilli MJ, Holloway JW, Henderson AJ. Asthma and lower airway disease: Prenatal and infant acetaminophen exposure, antioxidant gene polymorphisms, and childhood asthma. J Allergy Clin Immunol. 2010;126(6):1141–1148.e7. https://doi.org/10.1016/j.jaci.2010.08.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fryer AA, Hume R, Strange RC. The development of glutathione S-transferase and glutathione peroxidase activities in human lung. Biochim Biophys Acta. 1986;883(3):448–53. https://doi.org/10.1016/0304-4165(86)90283-7.

    Article  CAS  PubMed  Google Scholar 

  24. • Minelli C, Granell R, Newson R, Rose-Zerilli MJ, Torrent M, Ring SM, et al. Glutathione-S-transferase genes and asthma phenotypes: a Human Genome Epidemiology (HuGE) systematic review and meta-analysis including unpublished data. Int J Epidemiol. 2010;39(2):539–62. https://doi.org/10.1093/ije/dyp337. A comprehensive review and meta-analysis on effect of GST genes, giving evidence towards gene-environment interaction.

    Article  PubMed  Google Scholar 

  25. Kabesch M, Hoefler C, Carr D, Leupold W, Weiland SK, von Mutius E. Glutathione S transferase deficiency and passive smoking increase childhood asthma. Thorax. 2004;59(7):569–73. https://doi.org/10.1136/thx.2003.016667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rogers AJ, Brasch-Andersen C, Ionita-Laza I, Murphy A, Sharma S, Klanderman BJ, et al. The interaction of glutathione S-transferase M1-null variants with tobacco smoke exposure and the development of childhood asthma. Clin Exp Allergy. 2009;39(11):1721–9. https://doi.org/10.1111/j.1365-2222.2009.03372.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee YL, Lee YC, Guo YL. Associations of glutathione S-transferase P1, M1, and environmental tobacco smoke with wheezing illness in school children. Allergy. 2007;62(6):641–7. https://doi.org/10.1111/j.1398-9995.2007.01380.x.

    Article  PubMed  Google Scholar 

  28. Gilliland FD, Li YF, Dubeau L, Berhane K, Avol E, McConnell R, et al. Effects of glutathione S-transferase M1, maternal smoking during pregnancy, and environmental tobacco smoke on asthma and wheezing in children. Am J Respir Crit Care Med. 2002;166(4):457–63. https://doi.org/10.1164/rccm.2112064.

    Article  PubMed  Google Scholar 

  29. Li YF, Tseng PJ, Lin CC, Hung CL, Lin SC, Su WC, et al. NAD(P)H: Quinone oxidoreductase 1, glutathione S-transferase M1, environmental tobacco smoke exposure, and childhood asthma. Mutat Res. 2009;678(1):53–8. https://doi.org/10.1016/j.mrgentox.2009.06.008.

    Article  CAS  PubMed  Google Scholar 

  30. Munoz B, Magana JJ, Romero-Toledo I, Juarez-Perez E, Lopez-Moya A, Leyva-Garcia N, et al. The relationship among IL-13, GSTP1, and CYP1A1 polymorphisms and environmental tobacco smoke in a population of children with asthma in Northern Mexico. Environ Toxicol Pharmacol. 2012;33(2):226–32. https://doi.org/10.1016/j.etap.2011.12.007.

    Article  CAS  PubMed  Google Scholar 

  31. Schultz EN, Devadason SG, Khoo SK, Zhang G, Bizzintino JA, Martin AC, et al. The role of GSTP1 polymorphisms and tobacco smoke exposure in children with acute asthma. J Asthma. 2010;47(9):1049–56. https://doi.org/10.1080/02770903.2010.508856.

    Article  CAS  PubMed  Google Scholar 

  32. Panasevich S, Lindgren C, Kere J, Wickman M, Pershagen G, Nyberg F, et al. Interaction between early maternal smoking and variants in TNF and GSTP1 in childhood wheezing. Clin Exp Allergy. 2010;40(3):458–67. https://doi.org/10.1111/j.1365-2222.2010.03452.x.

    Article  CAS  PubMed  Google Scholar 

  33. Schroer KT, Biagini Myers JM, Ryan PH, LeMasters GK, Bernstein DI, Villareal M, et al. Associations between multiple environmental exposures and Glutathione S-Transferase P1 on persistent wheezing in a birth cohort. J Pediatr. 2009;154(3):401–8, 8.e1. https://doi.org/10.1016/j.jpeds.2008.08.040.

    Article  CAS  PubMed  Google Scholar 

  34. • Li YF, Gauderman WJ, Conti DV, Lin PC, Avol E, Gilliland FD. Glutathione S-transferase P1, maternal smoking, and asthma in children: a haplotype-based analysis. Environ Health Perspect. 2008;116(3):409–15. https://doi.org/10.1289/ehp.10655. Using a haplotype-based analysis to investigate the interactive effect of GSTP1.

    Article  PubMed  Google Scholar 

  35. •• Wu CC, Ou CY, Chang JC, Hsu TY, Kuo HC, Liu CA, et al. Gender-dependent effect of GSTM1 genotype on childhood asthma associated with prenatal tobacco smoke exposure. BioMed Res Int. 2014;2014(769452). The evidence on gender difference for gene-invironment interaction.

  36. Wang IJ, Tsai CH, Chen CH, Tung KY, Lee YL. Glutathione S-transferase, incense burning and asthma in children. Eur Respir J. 2011;37(6):1371–7. https://doi.org/10.1183/09031936.00137210.

    Article  PubMed  Google Scholar 

  37. •• Lee S-Y, Kim B-S, Kwon S-O, Oh S-Y, Shin HL, Jung Y-H, et al. Modification of additive effect between vitamins and ETS on childhood asthma risk according to GSTP1 polymorphism: a cross-sectional study. BMC Pulmonary Medicine. 2015;15(1):125. https://doi.org/10.1186/s12890-015-0093-0. The evidence for possible protection from antioxidant vitamine for those with susceptible genes.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gerbase MW, Keidel D, Imboden M, Gemperli A, Bircher A, Schmid-Grendelmeier P, et al. Effect modification of immunoglobulin E-mediated atopy and rhinitis by glutathione S-transferase genotypes in passive smokers. Clin Exp Allergy. 2011;41(11):1579–86. https://doi.org/10.1111/j.1365-2222.2011.03807.x.

    Article  CAS  PubMed  Google Scholar 

  39. Wang IJ, Guo YL, Lin TJ, Chen PC, Wu YN. GSTM1, GSTP1, prenatal smoke exposure, and atopic dermatitis. Ann Allergy Asthma Immunol. 2010;105(2):124–9. https://doi.org/10.1016/j.anai.2010.04.017.

    Article  CAS  PubMed  Google Scholar 

  40. He JQ, Connett JE, Anthonisen NR, Pare PD, Sandford AJ. Glutathione S-transferase variants and their interaction with smoking on lung function. Am J Respir Crit Care Med. 2004;170(4):388–94. https://doi.org/10.1164/rccm.200312-1763OC.

    Article  PubMed  Google Scholar 

  41. Malling TH, Sigsgaard T, Brasch-Andersen C, Frischknecht L, Andersen HR, Kruse TA, et al. Genetic polymorphisms in antioxidative enzymes are associated to forced expiratory volume in 1 s (FEV1) in smokers independently of asthma. Clin Respir J. 2012;6(1):46–55. https://doi.org/10.1111/j.1752-699X.2011.00245.x.

    Article  CAS  PubMed  Google Scholar 

  42. Murdzoska J, Devadason SG, Khoo SK, Landau LI, Young S, Goldblatt J, et al. In utero smoke exposure and role of maternal and infant glutathione s-transferase genes on airway responsiveness and lung function in infancy. Am J Respir Crit Care Med. 2010;181(1):64–71. https://doi.org/10.1164/rccm.200812-1887OC.

    Article  CAS  PubMed  Google Scholar 

  43. Palmer CNA, Doney ASF, Lee SP, Murrie I, Ismail T, Macgregor DF, et al. Glutathione S-transferase M1 and P1 genotype, passive smoking, and peak expiratory flow in asthma. Pediatrics. 2006;118(2):710–6. https://doi.org/10.1542/peds.2005-3030.

    Article  PubMed  Google Scholar 

  44. He JQ, Ruan J, Connett JE, Anthonisen NR, Pare PD, Sandford AJ. Antioxidant gene polymorphisms and susceptibility to a rapid decline in lung function in smokers. Am J Respir Crit Care Med. 2002;166(3):323–8. https://doi.org/10.1164/rccm.2111059.

    Article  PubMed  Google Scholar 

  45. Imboden M, Downs SH, Senn O, Matyas G, Brandli O, Russi EW, et al. Glutathione S-transferase genotypes modify lung function decline in the general population: SAPALDIA cohort study. Respir Res. 2007;8(1):2. https://doi.org/10.1186/1465-9921-8-2.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bowatte G, Lodge CJ, Perret JL, Matheson MC, Dharmage SC. Interactions of GST Polymorphisms in air pollution exposure and respiratory diseases and allergies. Curr Allergy Asthma Rep. 2016;16(12):85. https://doi.org/10.1007/s11882-016-0664-z.

    Article  PubMed  Google Scholar 

  47. Ercan H, Birben E, Dizdar EA, Keskin O, Karaaslan C, Soyer OU, et al. Mechanisms of asthma and allergic inflammation: oxidative stress and genetic and epidemiologic determinants of oxidant injury in childhood asthma. J Allergy Clin Immunol. 2006;118(5):1097–104. https://doi.org/10.1016/j.jaci.2006.08.012.

    Article  CAS  PubMed  Google Scholar 

  48. Ellegaard PK, Poulsen HE. Tobacco smoking and oxidative stress to DNA: a meta-analysis of studies using chromatographic and immunological methods. Scand J Clin Lab Invest. 2016;76(2):151–8. https://doi.org/10.3109/00365513.2015.1127407.

    Article  CAS  PubMed  Google Scholar 

  49. Sopori M. Effects of cigarette smoke on the immune system. Nat Rev Immunol. 2002;2(5):372–7. https://doi.org/10.1038/nri803.

    Article  CAS  PubMed  Google Scholar 

  50. Luchese C, Pinton S, Nogueira CW. Brain and lungs of rats are differently affected by cigarette smoke exposure: antioxidant effect of an organoselenium compound. Pharmacol Res. 2009;59(3):194–201. https://doi.org/10.1016/j.phrs.2008.11.006.

    Article  CAS  PubMed  Google Scholar 

  51. MacNee W, Rahman I. Is oxidative stress central to the pathogenesis of chronic obstructive pulmonary disease? Trends Mol Med. 2001;7(2):55–62. https://doi.org/10.1016/S1471-4914(01)01912-8.

    Article  CAS  PubMed  Google Scholar 

  52. Zimniak P, Nanduri B, Pikuła S, Bandorowicz-Pikuła J, Singhal SS, Srivastava SK, et al. Naturally occurring human glutathione S-transferase GSTP1-1 isoforms with isoleucine and valine in position 104 differ in enzymic properties. Eur J Biochem FEBS. 1994;224(3):893–9. https://doi.org/10.1111/j.1432-1033.1994.00893.x.

    Article  CAS  Google Scholar 

  53. Hu X, Xia H, Srivastava SK, Herzog C, Awasthi YC, Ji X, et al. Activity of four allelic forms of glutathione S-transferase hGSTP1-1 for diol epoxides of polycyclic aromatic hydrocarbons. Biochem Biophys Res Commun. 1997;238(2):397–402. https://doi.org/10.1006/bbrc.1997.7311.

    Article  CAS  PubMed  Google Scholar 

  54. Annesi-Maesano I, Agabiti N, Pistelli R, Couilliot MF, Forastiere F. Subpopulations at increased risk of adverse health outcomes from air pollution. Eur Respir J Suppl. 2003;40:57s–63s.

    Article  CAS  PubMed  Google Scholar 

  55. Kelly FJ, Dunster C, Mudway I. Air pollution and the elderly: oxidant/antioxidant issues worth consideration. Eur Respir J Suppl. 2003;40:70s–5s.

    Article  CAS  PubMed  Google Scholar 

  56. Bhattacharjee P, Paul S, Banerjee M, Patra D, Banerjee P, Ghoshal N, et al. Functional compensation of glutathione S-transferase M1 (GSTM1) null by another GST superfamily member, GSTM2. Sci Rep. 2013;3(1):2704. https://doi.org/10.1038/srep02704.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bergamaschi E, De Palma G, Mozzoni P, Vanni S, Vettori MV, Broeckaert F, et al. Polymorphism of quinone-metabolizing enzymes and susceptibility to ozone-induced acute effects. Am J Respir Crit Care Med. 2001;163(6):1426–31. https://doi.org/10.1164/ajrccm.163.6.2006056.

    Article  CAS  PubMed  Google Scholar 

  58. David GL, Romieu I, Sienra-Monge JJ, Collins WJ, Ramirez-Aguilar M, del Rio-Navarro BE, et al. Nicotinamide adenine dinucleotide (phosphate) reduced:quinone oxidoreductase and glutathione S-transferase M1 polymorphisms and childhood asthma. Am J Respir Crit Care Med. 2003;168(10):1199–204. https://doi.org/10.1164/rccm.200305-684OC.

    Article  PubMed  Google Scholar 

  59. Polidori MC, Scholtes M. Beyond and behind the fingerprints of oxidative stress in age-related diseases: secrets of successful aging. Arch Biochem Biophys. 2016;595:50–3. https://doi.org/10.1016/j.abb.2015.06.021.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Liyun Feng and Shuai Li who provided support on statistical methods.

Funding

Xin Dai, Prof. Shyamali Dharmage, Dr. Caroline Lodge, Dr. Melanie Matheson, and Dr. Adrian Lowe are funded by the National Health and Medical Research Council of Australia (NHMRC); Dr. John Burgess and Gayan Bowatte have no personal funding relationships to declare.

Author information

Authors and Affiliations

Authors

Contributions

Xin Dai, Prof. Shyamali Dharmage, and Dr. Caroline Lodge contributed to the study conception and design. Xin Dai, Gayan Bowatte, and Dr. Caroline Lodge contributed to the identification of the studies, data collection, study selection, and data extraction. Xin Dai, Prof Shyamali Dharmage, and Dr. Caroline Lodge led the analysis and interpretation of data, with support from Dr. Adrian Lowe, Dr. Melanie Matheson, Dr. John Burgess, A/Prof Lyle Gurrin, and Gayan Bowatte. Xin Dai wrote the initial draft of the manuscript which was critically revised for important content by all the authors. All authors approved the final version.

Corresponding author

Correspondence to Caroline J. Lodge.

Ethics declarations

Conflict of Interest

All authors declare no support from any organization for the submitted work, no financial relationships with any organizations that might have an interest in the submitted work in the previous 3 years, and no other relationships or activities that could appear to have influenced the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Allergies and the Environment

Electronic Supplementary Material

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, X., Bowatte, G., Lowe, A.J. et al. Do Glutathione S-Transferase Genes Modify the Link between Indoor Air Pollution and Asthma, Allergies, and Lung Function? A Systematic Review. Curr Allergy Asthma Rep 18, 20 (2018). https://doi.org/10.1007/s11882-018-0771-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-018-0771-0

Keywords

Navigation