Skip to main content

Advertisement

Log in

Antigen-Based Vaccination and Prevention of Type 1 Diabetes

  • Pathogenesis of Type 1 Diabetes (D Dabelea, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Insulin-dependent or type 1 diabetes (T1D) is a paradigm for prevention of autoimmune disease: Pancreatic β-cell autoantigens are defined, at-risk individuals can be identified before the onset of symptoms, and autoimmune diabetes is preventable in rodent models. Intervention in asymptomatic individuals before or after the onset of subclinical islet autoimmunity places a premium on safety, a requirement met only by lifestyle–dietary approaches or autoantigen-based vaccination to induce protective immune tolerance. Insulin is the key driver of autoimmune β-cell destruction in the nonobese diabetic (NOD) mouse model of T1D and is an early autoimmune target in children at risk for T1D. In the NOD mouse, mucosal administration of insulin induces regulatory T cells that protect against diabetes. The promise of autoantigen-specific vaccination in humans has yet to be realized, but recent trials of oral and nasal insulin vaccination in at-risk humans provide grounds for cautious optimism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Harrison LC. Vaccination against self to prevent autoimmune disease: the type 1 diabetes model. Immunol Cell Biol. 2008;89:139–45.

    Article  Google Scholar 

  2. Faria AM, Weiner HL. Oral tolerance: mechanisms and therapeutic applications. Adv Immunol. 1999;73:153–64.

    Article  PubMed  CAS  Google Scholar 

  3. Harrison LC, Hafler DA. Antigen-specific therapy for autoimmune disease. Curr Opin Immunol. 2000;12:704–11.

    Article  PubMed  CAS  Google Scholar 

  4. Wing K, Sakaguchi S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol. 2010;11:7–13.

    Article  PubMed  CAS  Google Scholar 

  5. Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27:20–1.

    Article  PubMed  CAS  Google Scholar 

  6. Zhang Y, Bandala-Sanchez E, Harrison LC. Revisiting regulatory T cells in type 1 diabetes. Curr Opin Endocrinol Diabetes Obes. 2012;19:271–8.

    Article  PubMed  CAS  Google Scholar 

  7. Curotto de Lafaille MA, Lafaille JJ. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity. 2009;30:626–35.

    Article  PubMed  CAS  Google Scholar 

  8. Narendran P, Mannering SI, Harrison LC. Proinsulin – a pathogenic autoantigen in type 1 diabetes. Autoimmun Rev. 2003;2:204–10.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang L, Nakayama M, Eisenbarth GS. Insulin as an autoantigen in NOD/human diabetes. Curr Opin Immunol. 2008;20:111–8.

    Article  PubMed  Google Scholar 

  10. Krishnamurthy B, Dudek NL, McKenzie MD, et al. Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP. J Clin Invest. 2006;116:3258–65.

    Article  PubMed  CAS  Google Scholar 

  11. Harrison LC. Risk assessment, prediction and prevention of type 1 diabetes. Pediatric Diabetes. 2001;2:71–82.

    Article  PubMed  CAS  Google Scholar 

  12. Fourlanos S, Narendran P, Byrnes G, Colman P, Harrison LC. Insulin resistance is a risk factor for progression to type 1 diabetes. Diabetologia. 2004;47:1661–7.

    Article  PubMed  CAS  Google Scholar 

  13. Shah SC, Malone JI, Simpson NE. A randomized trial of intensive insulin therapy in newly diagnosed insulin-dependent diabetes mellitus. N Engl J Med. 1989;320:550–4.

    Article  PubMed  CAS  Google Scholar 

  14. Selam JL, Woertz L, Lozano J, et al. The use of glipizide combined with intensive insulin treatment for the induction of remissions in new onset adult type I diabetes. Autoimmunity. 1993;16:281–8.

    Article  PubMed  CAS  Google Scholar 

  15. Linn T, Ortac K, Laube H, Federlin K. Intensive therapy in adult insulin-dependent diabetes mellitus is associated with improved insulin sensitivity and reserve: a randomized, controlled, prospective study over 5 years in newly diagnosed patients. Metabolism. 1996;45:1508–13.

    Article  PubMed  CAS  Google Scholar 

  16. Kobayashi T, Nakanishi K, Murase T, Kosaka K. Small doses of subcutaneous insulin as a strategy for preventing slowly progressive b-cell failure in islet cell antibody-positive patients with clinical features of NIDDM. Diabetes. 1996;45:622–6.

    Article  PubMed  CAS  Google Scholar 

  17. Schnell O, Eisfelder B, Standl E, Ziegler AG. High-dose intravenous insulin infusion versus intensive insulin treatment in newly diagnosed IDDM. Diabetes. 1997;46:1607–11.

    Article  PubMed  CAS  Google Scholar 

  18. Füchtenbusch M, Rabl W, Grassl B, et al. Delay of type I diabetes in high risk, first degree relatives by parenteral antigen administration: the Schwabing Insulin Prophylaxis Pilot Trial. Diabetologia. 1998;41:536–41.

    Article  PubMed  Google Scholar 

  19. Pozzilli P, Pitocco D, Visalli N, et al. No effect of oral insulin on residual beta-cell function in recent-onset type 1 diabetes (the IMDIAB VII). IMDIAB Group. Diabetologia. 2000;43:1000–4.

    Article  PubMed  CAS  Google Scholar 

  20. Chaillous L, Lefevre H, Thivolet C, et al. Oral insulin administration and residual beta-cell function in recent-onset type 1 diabetes: a multicentre randomised controlled trial. Diabete Insuline Orale group. Lancet. 2000;356:545–9.

    Article  PubMed  CAS  Google Scholar 

  21. Diabetes Prevention Trial-Type 1 Diabetes Study Group. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N Engl J Med. 2002;346:1685–91.

    Article  Google Scholar 

  22. Harrison LC, Honeyman MC, Steele CE, et al. Pancreatic beta-cell function and immune responses to insulin after administration of intranasal insulin to humans at risk for type 1 diabetes. Diabetes Care. 2004;27:2348–55.

    Article  PubMed  CAS  Google Scholar 

  23. Skyler JS, Krischer JP, Wolfsdorf J, et al. Effects of oral insulin in relatives of patients with type 1 diabetes: the Diabetes Prevention Trial–Type 1. Diabetes Care. 2005;28:1068–76.

    Article  PubMed  CAS  Google Scholar 

  24. Nanto-Salonen K, Kupila A, Simell S, et al. Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial. Lancet. 2008;372:1746–55.

    Article  PubMed  Google Scholar 

  25. Walter M, Philotheou A, Bonnici F, Ziegler AG, Jimenez R. NBI-6024 Study Group: no effect of the altered peptide ligand NBI-6024 on beta-cell residual function and insulin needs in new-onset type 1 diabetes. Diabetes Care. 2009;2:2036–40.

    Article  Google Scholar 

  26. Orban T, Farkas K, Jalahej H. Autoantigen-specific regulatory T cells induced in patients with type 1 diabetes mellitus by insulin B-chain immunotherapy. J Autoimmun. 2010;34:408–15.

    Article  PubMed  CAS  Google Scholar 

  27. •• Fourlanos S, Perry C, Gellert SA, et al. Evidence that nasal insulin induces immune tolerance to insulin in adults with autoimmune diabetes. Diabetes. 2011;60:1237–45. In a randomized controlled trial, nasal insulin markedly suppressed the antibody response to a subsequent “challenge” by subcutaneous insulin. This is the first evidence of immune tolerance to a mucosally administered autoantigen and provides a rationale for trials of mucosal insulin vaccination in people at risk for T1D.

    Article  PubMed  CAS  Google Scholar 

  28. Agardh CD, Cilio CM, Lethagen A, et al. Clinical evidence for the safety of GAD65 immunomodulation in adult-onset autoimmune diabetes. J Diabetes Complications. 2005;19:238–46.

    Article  PubMed  Google Scholar 

  29. Ludvigsson J, Faresjo M, Hjorth M, et al. GAD treatment and insulin secretion in recent-onset type 1 diabetes. N Engl J Med. 2008;359:1909–20.

    Article  PubMed  CAS  Google Scholar 

  30. •• Ludvigsson J, Krisky D, Casas R, et al. GAD65 antigen therapy in recently diagnosed type 1 diabetes mellitus. N Engl J Med. 2012;366:433–42. This large randomized trial of subcutaneous GAD65 with alum as adjuvant followed an earlier trial by the same investigators [ref. 29] that suggested that the vaccine reduced the decline in β-cell function after diagnosis. In the previous trial, 70 patients 10–18 years of age with T1D for less than 18 months were treated with two 20-μg doses of either GAD-alum or placebo a month apart. Changes in fasting and meal-stimulated C-peptide secretion were similar after 15 months but declined less in those treated with GAD-alum within 6 months of diagnosis. Here, 334 patients of similar age but diagnosed less than 3 months were randomized to two doses of GAD-alum or placebo. GAD65-alum induced antibodies to GAD65 and was not associated with major side effects, as previously, but did not alter the decline in β-cell function.

    Article  PubMed  CAS  Google Scholar 

  31. •• Wherrett DK, Bundy B, Becker DJ, et al. Antigen-based therapy with glutamic acid decarboxylase (GAD) vaccine in patients with recent-onset type 1 diabetes: a randomised double-blind trial. Lancet. 2011;378:319–27. This well-powered randomized controlled trial in 145 people with recent-onset T1D (<3 months) showed that subcutaneous GAD65-alum did not arrest the decline in age-adjusted meal-stimulated C-peptide secretion after 1 year. This finding conclusively demonstrates that the GAD-alum vaccine is ineffective in people with clinical T1D but does not exclude possible efficacy in people with subclinical disease or those genetically at risk.

    Article  PubMed  CAS  Google Scholar 

  32. • Mamchak AA, Manenkova Y, Leconet W, et al. Preexisting autoantibodies predict efficacy of oral insulin to cure autoimmune diabetes in combination with anti-CD3. Diabetes. 2012;61:1490–9. The authors demonstrate synergy between treatment with anti-CD3 monoclonal antibody and oral insulin in reversing hyperglycemia at diagnosis in NOD mice. This is a rationale for combining autoantigen-specific vaccination with conventional immune suppression. In addition, they show that a high serum concentration of insulin autoantibody (IAA) predicts response to combination treatment. This echoes the post-DPT–1 oral insulin trial finding [ref. 23] that slower progression to diabetes after oral insulin was associated with higher IAA at entry. How insulin autoimmunity relates to a tolerogenic response to insulin requires an answer; meanwhile, IAA could be a useful biomarker.

    Article  PubMed  CAS  Google Scholar 

  33. Weiner HL, Mackin GA, Matsui M. Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science. 1993;259:1321–4.

    Article  PubMed  CAS  Google Scholar 

  34. Trentham DA, Dynesius-Trentham RA, Orav EJ. Effects of oral administration of type II collagen on rheumatoid arthritis. Science. 1993;261:1727–30.

    Article  PubMed  CAS  Google Scholar 

  35. McKown KM, Carbone LD, Kaplan SB, et al. Lack of efficacy of oral bovine type II collagen added to existing therapy in rheumatoid arthritis. Arthritis Rheum. 1999;42:1204–8.

    Article  PubMed  CAS  Google Scholar 

  36. Metzler B, Wraith DC. Inhibition of experimental autoimmune encephalomyelitis by inhalation but not oral administration of the encephalitogenic peptide: influence of MHC binding affinity. Int Immunol. 1993;5:1159–65.

    Article  PubMed  CAS  Google Scholar 

  37. Hänninen A, Braakhuis A, Heath WR, Harrison LC. Mucosal antigen primes diabetogenic cytotoxic T-lymphocytes regardless of dose or delivery route. Diabetes. 2001;50:771–5.

    Article  PubMed  Google Scholar 

  38. Hänninen A, Martinez NR, Davey GM, Heath WR, Harrison LC. Transient blockade of CD40 ligand dissociates pathogenic from protective mucosal immunity. J Clin Invest. 2002;109:261–7.

    PubMed  Google Scholar 

  39. Martinez NR, Augstein P, Moustakas AK, et al. Disabling an integral CTL epitope allows suppression of autoimmune diabetes by intranasal proinsulin peptide. J Clin Invest. 2003;111:1365–71.

    PubMed  CAS  Google Scholar 

  40. Zhang ZH, Davidson L, Eisenbarth G, Weiner HL. Suppression of diabetes in nonobese diabetic mice by oral administration of porcine insulin. Proc Natl Acad Sci U S A. 1991;88:10252–6.

    Article  PubMed  CAS  Google Scholar 

  41. Bergerot I, Fabien N, Maguer V, Thivolet C. Oral administration of human insulin to NOD mice generates CD4+ T cells that suppress adoptive transfer of diabetes. J Autoimmun. 1994;7:655–63.

    Article  PubMed  CAS  Google Scholar 

  42. Harrison LC, Dempsey-Collier M, Kramer DR, Takahashi K. Aerosol insulin induces regulatory CD8 gamma delta T cells that prevent murine insulin-dependent diabetes. J Exp Med. 1996;184:2167–74.

    Article  PubMed  CAS  Google Scholar 

  43. Waldo FB, Vandenwallbake AWL, Mestecky J, Husby S. Suppression of the immune response by nasal immunization. Clin Immunol Immunopathol. 1994;72:30–4.

    Article  PubMed  CAS  Google Scholar 

  44. Achenbach P, Barker J, Bonifacio E. Pre-POINT Study Group: Modulating the natural history of type 1 diabetes in children at high genetic risk by mucosal insulin immunization. Curr Diab Rep. 2008;87–93.

  45. Fourlanos S, Dotta F, Greenbaum CK, et al. Latent autoimmune diabetes in adults (LADA) should be less latent. Diabetologia. 2005;48:2206–12.

    Article  PubMed  CAS  Google Scholar 

  46. De Aizpurua HJ, French MB, Chosich N, Harrison LC. Natural history of humoral immunity to glutamic acid decarboxylase in non-obese diabetic (NOD) mice. J Autoimmun. 1994;7:643–53.

    Article  PubMed  Google Scholar 

  47. Tisch R, Yang XD, Singer SM, et al. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature. 1993;366:72–5.

    Article  PubMed  CAS  Google Scholar 

  48. Kaufman DL, Clare-Salzler M, Tian J, et al. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature. 1993;366:69–72.

    Article  PubMed  CAS  Google Scholar 

  49. French MB, Allison J, Cram DS, et al. Transgenic expression of mouse proinsulin II prevents diabetes in non-obese diabetic mice. Diabetes. 1997;46:34–9.

    Article  PubMed  CAS  Google Scholar 

  50. Jaeckel E, Klein L, Martin-Orozco N, von Boehmer H. Normal incidence of diabetes in NOD mice tolerant to glutamic acid decarboxylase. J Exp Med. 2003;197:1635–44.

    Article  PubMed  CAS  Google Scholar 

  51. Petersen JS, Karlsen AE, Markholst H, et al. Neonatal tolerization with glutamic acid decarboxylase but not with bovine serum albumin delays the onset of diabetes in NOD mice. Diabetes. 1994;43:1478–84.

    Article  PubMed  CAS  Google Scholar 

  52. Tisch R, Wang B, Weaver DJ, et al. Antigen-specific mediated suppression of beta cell autoimmunity by plasmid DNA vaccination. J Immunol. 2001;16:2122–32.

    Google Scholar 

  53. Tian J, Atkinson MA, Clare-Salzler M, et al. Nasal administration of glutamate decarboxylase (GAD65) peptides induces Th2 responses and prevents murine insulin-dependent diabetes. J Exp Med. 1996;183:1561–7.

    Article  PubMed  CAS  Google Scholar 

  54. Ludvigsson J. Therapy with GAD in diabetes. Diabetes Metab Res Rev. 2009;25:307–15.

    Article  PubMed  CAS  Google Scholar 

  55. • Hjorth M, Axelsson S, Ryden A, et al. GAD-alum treatment induces GAD65-specific CD4 + CD25 high FOXP3+ cells in type 1 diabetic patients. Clin Immunol. 2011;138:117–26. Despite the failure of subcutaneous GAD-alum vaccine to slow the decline of β-cell function after the diagnosis of T1D [refs. 30••, 31••], this and the following study [ref. 56•] demonstrate that the vaccine has a bio-effect possibly consistent with induction of immune tolerance. It will be important to confirm and, if possible, extend these findings, because evidence for tolerance would support application of the GAD-alum vaccine for T1D prevention in at-risk individuals.

    Article  PubMed  CAS  Google Scholar 

  56. • Axelsson S, Hjorth M, Ludvigsson J, Casas R. Decreased GAD (65)-specific Th1/Tc1 phenotype in children with Type 1 diabetes treated with GAD-alum. Diabet Med. 2012;29:1272–8. See comments under ref. [55•] above.

    Article  PubMed  CAS  Google Scholar 

  57. Fourlanos S, Varney M, Tait BD, et al. The rising incidence of type 1 diabetes is accounted for by cases with lower risk HLA genotypes. Diabetes Care. 2008;31:1546–9.

    Article  PubMed  Google Scholar 

  58. Morahan G, Mehta M, James I, et al. Tests for genetic interactions in type 1 diabetes: linkage and stratification analyses of 4,422 affected sib-pairs. Diabetes. 2011;60:1030–40.

    Article  PubMed  CAS  Google Scholar 

  59. Bennett ST, Lucassen AM, Gough SC, et al. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet. 1995;9:284–92.

    Article  PubMed  CAS  Google Scholar 

  60. Pugliese A, Zeller M, Fernandez Jr A, et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet. 1997;15:293–7.

    Article  PubMed  CAS  Google Scholar 

  61. Narendran P, Neale AM, Lee BH, et al. Proinsulin is encoded by an RNA splice variant in human blood myeloid cells. Proc Natl Acad Sci. 2006;103:16430–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Health and Medical Research Council of Australia (Program Grant 516700; Fellowship [LCH] 637301) and was made possible through Victorian State Government Operational Infrastructure Support and Australian Government NHMRC IRIIS.

Compliance with Ethics Guidelines

Conflict of Interest

Leonard C. Harrison, John M. Wentworth, Yuxia Zhang, Esther Bandala-Sanchez, Ralph M. Böhmer, Alana M. Neale, Natalie L. Stone, Gaetano Naselli, Julian J. Bosco, Priscilla Auyeung, Maryam Rashidi, Petra Augstein, and Grant Morahan declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard C. Harrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrison, L.C., Wentworth, J.M., Zhang, Y. et al. Antigen-Based Vaccination and Prevention of Type 1 Diabetes. Curr Diab Rep 13, 616–623 (2013). https://doi.org/10.1007/s11892-013-0415-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-013-0415-7

Keywords

Navigation