Skip to main content

Advertisement

Log in

Inter-organelle Communication in the Pathogenesis of Mitochondrial Dysfunction and Insulin Resistance

  • Other Forms of Diabetes and Its Complications (JJ Nolan and H Thabit, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Impairments in mitochondrial function in patients with insulin resistance and type 2 diabetes have been disputed for decades. This review aims to briefly summarize the current knowledge on mitochondrial dysfunction in metabolic tissues and to particularly focus on addressing a new perspective of mitochondrial dysfunction, the altered capacity of mitochondria to communicate with other organelles within insulin-resistant tissues.

Recent Findings

Organelle interactions are temporally and spatially formed connections essential for normal cell function. Recent studies have shown that mitochondria interact with various cellular organelles, such as the endoplasmic reticulum, lysosomes and lipid droplets, forming inter-organelle junctions.

Summary

We will discuss the current knowledge on alterations in these mitochondria-organelle interactions in insulin resistance and diabetes, with a focus on changes in mitochondria-lipid droplet communication as a major player in ectopic lipid accumulation, lipotoxicity and insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Zimmet P, Alberti KG, Magliano DJ, Bennett PH. Diabetes mellitus statistics on prevalence and mortality: facts and fallacies. Nat Rev Endocrinol. 2016;12(10):616–22. https://doi.org/10.1038/nrendo.2016.105.

    Article  PubMed  Google Scholar 

  2. Montgomery MK, Turner N. Mitochondrial dysfunction and insulin resistance: an update. Endocr Connect. 2015;4(1):R1–R15. https://doi.org/10.1530/EC-14-0092.

    Article  CAS  PubMed  Google Scholar 

  3. Suliman HB, Piantadosi CA. Mitochondrial quality control as a therapeutic target. Pharmacol Rev. 2016;68(1):20–48. https://doi.org/10.1124/pr.115.011502.

    Article  CAS  PubMed  Google Scholar 

  4. Montgomery MK, De Nardo W, Watt MJ. Impact of lipotoxicity on tissue “cross talk” and metabolic regulation. Physiology (Bethesda). 2019;34(2):134–49. https://doi.org/10.1152/physiol.00037.2018.

    Article  CAS  Google Scholar 

  5. Ly LD, Xu S, Choi SK, Ha CM, Thoudam T, Cha SK, et al. Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp Mol Med. 2017;49(2):e291. https://doi.org/10.1038/emm.2016.157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Giralt M, Villarroya F. Mitochondrial uncoupling and the regulation of glucose homeostasis. Curr Diabetes Rev. 2017;13(4):386–94. https://doi.org/10.2174/1573399812666160217122707.

    Article  CAS  PubMed  Google Scholar 

  7. Horvath SE, Daum G. Lipids of mitochondria. Prog Lipid Res. 2013;52(4):590–614. https://doi.org/10.1016/j.plipres.2013.07.002.

    Article  CAS  PubMed  Google Scholar 

  8. •• Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Role of cardiolipin in mitochondrial function and dynamics in health and disease: molecular and pharmacological aspects. Cells. 2019;8(7). https://doi.org/10.3390/cells8070728. This review discusses the role of cardiolipin in mitochondrial function and dynamics.

    Article  CAS  PubMed Central  Google Scholar 

  9. Ma ZA, Zhao Z, Turk J. Mitochondrial dysfunction and beta-cell failure in type 2 diabetes mellitus. Exp Diabetes Res. 2012;2012:703538. https://doi.org/10.1155/2012/703538.

    Article  CAS  PubMed  Google Scholar 

  10. Han X, Yang J, Cheng H, Yang K, Abendschein DR, Gross RW. Shotgun lipidomics identifies cardiolipin depletion in diabetic myocardium linking altered substrate utilization with mitochondrial dysfunction. Biochemistry. 2005;44(50):16684–94. https://doi.org/10.1021/bi051908a.

    Article  CAS  PubMed  Google Scholar 

  11. Han X, Yang J, Yang K, Zhao Z, Abendschein DR, Gross RW. Alterations in myocardial cardiolipin content and composition occur at the very earliest stages of diabetes: a shotgun lipidomics study. Biochemistry. 2007;46(21):6417–28. https://doi.org/10.1021/bi7004015.

    Article  CAS  PubMed  Google Scholar 

  12. Daum G, Vance JE. Import of lipids into mitochondria. Prog Lipid Res. 1997;36(2):103–30. https://doi.org/10.1016/S0163-7827(97)00006-4.

    Article  CAS  PubMed  Google Scholar 

  13. Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal. 2010;12(4):537–77. https://doi.org/10.1089/ars.2009.2531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science (New York, NY). 2012;337(6098):1062–5. https://doi.org/10.1126/science.1219855.

    Article  CAS  Google Scholar 

  15. Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell. 2006;126(1):177–89. https://doi.org/10.1016/j.cell.2006.06.025.

    Article  CAS  PubMed  Google Scholar 

  16. Molina AJ, Wikstrom JD, Stiles L, Las G, Mohamed H, Elorza A, et al. Mitochondrial networking protects beta-cells from nutrient-induced apoptosis. Diabetes. 2009;58(10):2303–15. https://doi.org/10.2337/db07-1781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zorzano A, Liesa M, Palacin M. Mitochondrial dynamics as a bridge between mitochondrial dysfunction and insulin resistance. Arch Physiol Biochem. 2009;115(1):1–12. https://doi.org/10.1080/13813450802676335.

    Article  CAS  PubMed  Google Scholar 

  18. Montaigne D, Marechal X, Coisne A, Debry N, Modine T, Fayad G, et al. Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation. 2014;130(7):554–64. https://doi.org/10.1161/circulationaha.113.008476.

    Article  CAS  PubMed  Google Scholar 

  19. Fealy CE, Mulya A, Lai N, Kirwan JP. Exercise training decreases activation of the mitochondrial fission protein dynamin-related protein-1 in insulin-resistant human skeletal muscle. J Appl Physiol (1985). 2014;117(3):239–45. https://doi.org/10.1152/japplphysiol.01064.2013.

    Article  CAS  Google Scholar 

  20. Yoon Y, Galloway CA, Jhun BS, Yu T. Mitochondrial dynamics in diabetes. Antioxid Redox Signal. 2011;14(3):439–57. https://doi.org/10.1089/ars.2010.3286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang L, Long Q, Liu J, Tang H, Li Y, Bao F, et al. Mitochondrial fusion provides an ‘initial metabolic complementation’ controlled by mtDNA. Cell Mol Life Sci. 2015;72(13):2585–98. https://doi.org/10.1007/s00018-015-1863-9.

    Article  CAS  PubMed  Google Scholar 

  22. Lavorato M, Iyer VR, Dewight W, Cupo RR, Debattisti V, Gomez L, et al. Increased mitochondrial nanotunneling activity, induced by calcium imbalance, affects intermitochondrial matrix exchanges. Proc Natl Acad Sci U S A. 2017;114(5):E849–e58. https://doi.org/10.1073/pnas.1617788113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. •• Vincent AE, White K, Davey T, Philips J, Ogden RT, Lawless C, et al. Quantitative 3D mapping of the human skeletal muscle mitochondrial network. Cell Rep. 2019;26(4):996–1009.e4. https://doi.org/10.1016/j.celrep.2019.01.010. This study maps the mitochondrial network in human muscle at electron microscopy resolution and defines the ultrastructure of mitochondrial nanotunnels.

    Article  PubMed  Google Scholar 

  24. •• Gatta AT, Levine TP. Piecing together the patchwork of contact sites. Trends Cell Biol. 2017;27(3):214–29. https://doi.org/10.1016/j.tcb.2016.08.010. This is an important review on inter-organelle communication and organelle contact sites.

    Article  CAS  PubMed  Google Scholar 

  25. •• Simmen T, Tagaya M. Organelle communication at membrane contact sites (MCS): from curiosity to center stage in cell biology and biomedical research. Adv Exp Med Biol. 2017;997:1–12. https://doi.org/10.1007/978-981-10-4567-7_1. This review is a detailed summary of membrane contact sites and the importance of these contact sites in organelle function.

    Google Scholar 

  26. •• Scorrano L, De Matteis MA, Emr S, Giordano F, Hajnóczky G, Kornmann B, et al. Coming together to define membrane contact sites. Nat Commun. 2019;10(1):1287. https://doi.org/10.1038/s41467-019-09253-3. This scientific opinion paper provides guidelines for the experimental definition and analysis of contact sites.

  27. Lackner LL, Ping H, Graef M, Murley A, Nunnari J. Endoplasmic reticulum-associated mitochondria-cortex tether functions in the distribution and inheritance of mitochondria. Proc Natl Acad Sci U S A. 2013;110(6):E458–67. https://doi.org/10.1073/pnas.1215232110.

    Article  CAS  Google Scholar 

  28. •• Eisenberg-Bord M, Shai N, Schuldiner M, Bohnert M. A tether is a tether is a tether: tethering at membrane contact sites. Dev Cell. 2016;39(4):395–409. https://doi.org/10.1016/j.devcel.2016.10.022. This review provides guidelines that define the prerequisites for categorizing a protein as a tether.

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y, Zhu X. Endoplasmic reticulum-mitochondria tethering in neurodegenerative diseases. Transl Neurodegener. 2017;6:21. https://doi.org/10.1186/s40035-017-0092-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J, Weissman JS, et al. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science (New York, NY). 2009;325(5939):477–81. https://doi.org/10.1126/science.1175088.

    Article  CAS  Google Scholar 

  31. Helle SC, Kanfer G, Kolar K, Lang A, Michel AH, Kornmann B. Organization and function of membrane contact sites. Biochim Biophys Acta. 2013;1833(11):2526–41. https://doi.org/10.1016/j.bbamcr.2013.01.028.

    Article  CAS  PubMed  Google Scholar 

  32. Theurey P, Tubbs E, Vial G, Jacquemetton J, Bendridi N, Chauvin MA, et al. Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver. J Mol Cell Biol. 2016;8(2):129–43. https://doi.org/10.1093/jmcb/mjw004.

    Article  CAS  PubMed  Google Scholar 

  33. Hayashi T, Fujimoto M. Detergent-resistant microdomains determine the localization of sigma-1 receptors to the endoplasmic reticulum-mitochondria junction. Mol Pharmacol. 2010;77(4):517–28. https://doi.org/10.1124/mol.109.062539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vance JE. Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem. 1990;265(13):7248–56.

    CAS  PubMed  Google Scholar 

  35. Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR, Cavagna D, et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol. 2006;175(6):901–11. https://doi.org/10.1083/jcb.200608073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Booth DM, Enyedi B, Geiszt M, Varnai P, Hajnoczky G. Redox nanodomains are induced by and control calcium signaling at the ER-mitochondrial interface. Mol Cell. 2016;63(2):240–8. https://doi.org/10.1016/j.molcel.2016.05.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. •• Takeda K, Nagashima S, Shiiba I, Uda A, Tokuyama T, Ito N, et al. MITOL prevents ER stress-induced apoptosis by IRE1alpha ubiquitylation at ER-mitochondria contact sites. EMBO J. 2019;38(15):e100999. https://doi.org/10.15252/embj.2018100999. This study defines MITOL as a novel player in mitochondria-ER contact.

  38. Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita N, et al. Autophagosomes form at ER-mitochondria contact sites. Nature. 2013;495(7441):389–93. https://doi.org/10.1038/nature11910.

    Article  CAS  PubMed  Google Scholar 

  39. Horner SM, Liu HM, Park HS, Briley J, Gale M Jr. Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc Natl Acad Sci U S A. 2011;108(35):14590–5. https://doi.org/10.1073/pnas.1110133108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tarasov AI, Griffiths EJ, Rutter GA. Regulation of ATP production by mitochondrial Ca(2+). Cell Calcium. 2012;52(1):28–35. https://doi.org/10.1016/j.ceca.2012.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Betz C, Stracka D, Prescianotto-Baschong C, Frieden M, Demaurex N, Hall MN. Feature article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc Natl Acad Sci U S A. 2013;110(31):12526–34. https://doi.org/10.1073/pnas.1302455110.

    Article  PubMed  PubMed Central  Google Scholar 

  42. De Vos KJ, Morotz GM, Stoica R, Tudor EL, Lau KF, Ackerley S, et al. VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum Mol Genet. 2012;21(6):1299–311. https://doi.org/10.1093/hmg/ddr559.

    Article  CAS  PubMed  Google Scholar 

  43. Iwasawa R, Mahul-Mellier AL, Datler C, Pazarentzos E, Grimm S. Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J. 2011;30(3):556–68. https://doi.org/10.1038/emboj.2010.346.

    Article  CAS  PubMed  Google Scholar 

  44. de Brito OM, Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 2008;456(7222):605–10. https://doi.org/10.1038/nature07534.

    Article  CAS  PubMed  Google Scholar 

  45. Teng Y, Ren X, Li H, Shull A, Kim J, Cowell JK. Mitochondrial ATAD3A combines with GRP78 to regulate the WASF3 metastasis-promoting protein. Oncogene. 2016;35(3):333–43. https://doi.org/10.1038/onc.2015.86.

    Article  CAS  PubMed  Google Scholar 

  46. •• Rieusset J. Role of endoplasmic reticulum-mitochondria communication in type 2 diabetes. Adv Exp Med Biol. 2017;997:171–86. https://doi.org/10.1007/978-981-10-4567-7_13. This review discusses the role of mitochondria-associated membranes (MAM) in glucose homeostasis.

    Google Scholar 

  47. Thoudam T, Ha C-M, Leem J, Chanda D, Park J-S, Kim H-J, et al. PDK4 augments ER–mitochondria contact to dampen skeletal muscle insulin signaling during obesity. Diabetes. 2019;68(3):571–86. https://doi.org/10.2337/db18-0363.

    Article  CAS  PubMed  Google Scholar 

  48. Arruda AP, Pers BM, Parlakgul G, Guney E, Inouye K, Hotamisligil GS. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat Med. 2014;20(12):1427–35. https://doi.org/10.1038/nm.3735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tubbs E, Theurey P, Vial G, Bendridi N, Bravard A, Chauvin M-A, et al. Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes. 2014;63(10):3279–94. https://doi.org/10.2337/db13-1751.

    Article  CAS  PubMed  Google Scholar 

  50. •• Tubbs E, Chanon S, Robert M, Bendridi N, Bidaux G, Chauvin M-A, et al. Disruption of mitochondria-associated endoplasmic reticulum membrane (MAM) integrity contributes to muscle insulin resistance in mice and humans. Diabetes. 2018;67(4):636–50. https://doi.org/10.2337/db17-0316. This study highlights the importance of mitochondria-associated membranes (MAM) integrity in muscle insulin resistance.

    Article  CAS  PubMed  Google Scholar 

  51. Shinjo S, Jiang S, Nameta M, Suzuki T, Kanai M, Nomura Y, et al. Disruption of the mitochondria-associated ER membrane (MAM) plays a central role in palmitic acid-induced insulin resistance. Exp Cell Res. 2017;359(1):86–93. https://doi.org/10.1016/j.yexcr.2017.08.006.

    Article  CAS  PubMed  Google Scholar 

  52. Thivolet C, Vial G, Cassel R, Rieusset J, Madec AM. Reduction of endoplasmic reticulum- mitochondria interactions in beta cells from patients with type 2 diabetes. PLoS One. 2017;12(7):e0182027. https://doi.org/10.1371/journal.pone.0182027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Herms A, Bosch M, Reddy BJN, Schieber NL, Fajardo A, Rupérez C, et al. AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation. Nat Commun. 2015;6(1):7176. https://doi.org/10.1038/ncomms8176.

    Article  PubMed  Google Scholar 

  54. Tarnopolsky MA, Rennie CD, Robertshaw HA, Fedak-Tarnopolsky SN, Devries MC, Hamadeh MJ. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Phys Regul Integr Comp Phys. 2007;292(3):R1271–8. https://doi.org/10.1152/ajpregu.00472.2006.

    Article  CAS  Google Scholar 

  55. Shubeita GT, Tran SL, Xu J, Vershinin M, Cermelli S, Cotton SL, et al. Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets. Cell. 2008;135(6):1098–107. https://doi.org/10.1016/j.cell.2008.10.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rambold AS, Cohen S, Lippincott-Schwartz J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev Cell. 2015;32(6):678–92. https://doi.org/10.1016/j.devcel.2015.01.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bischof J, Salzmann M, Streubel MK, Hasek J, Geltinger F, Duschl J, et al. Clearing the outer mitochondrial membrane from harmful proteins via lipid droplets. Cell Death Dis. 2017;3(1):17016. https://doi.org/10.1038/cddiscovery.2017.16.

    Article  Google Scholar 

  58. Nguyen TB, Louie SM, Daniele JR, Tran Q, Dillin A, Zoncu R, et al. DGAT1-dependent lipid droplet biogenesis protects mitochondrial function during starvation-induced autophagy. Dev Cell. 2017;42(1):9–21.e5. https://doi.org/10.1016/j.devcel.2017.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. •• Schuldiner M, Bohnert M. A different kind of love - lipid droplet contact sites. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(10 Pt B):1188–96. https://doi.org/10.1016/j.bbalip.2017.06.005. This review highlights recent findings on the functions of lipid droplet contact sites.

    Article  CAS  Google Scholar 

  60. Kory N, Farese RV Jr, Walther TC. Targeting fat: mechanisms of protein localization to lipid droplets. Trends Cell Biol. 2016;26(7):535–46. https://doi.org/10.1016/j.tcb.2016.02.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kimmel AR, Sztalryd C. The perilipins: major cytosolic lipid droplet-associated proteins and their roles in cellular lipid storage, mobilization, and systemic homeostasis. Annu Rev Nutr. 2016;36:471–509. https://doi.org/10.1146/annurev-nutr-071813-105410.

    Article  CAS  PubMed  Google Scholar 

  62. Wang H, Sreenivasan U, Hu H, Saladino A, Polster BM, Lund LM, et al. Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J Lipid Res. 2011;52(12):2159–68. https://doi.org/10.1194/jlr.M017939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang H, Sreenivasan U, Gong DW, O’Connell KA, Dabkowski ER, Hecker PA, et al. Cardiomyocyte-specific perilipin 5 overexpression leads to myocardial steatosis and modest cardiac dysfunction. J Lipid Res. 2013;54(4):953–65. https://doi.org/10.1194/jlr.M032466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pollak NM, Schweiger M, Jaeger D, Kolb D, Kumari M, Schreiber R, et al. Cardiac-specific overexpression of perilipin 5 provokes severe cardiac steatosis via the formation of a lipolytic barrier. J Lipid Res. 2013;54(4):1092–102. https://doi.org/10.1194/jlr.M034710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gemmink A, Daemen S, Kuijpers HJH, Schaart G, Duimel H, Lopez-Iglesias C, et al. Super-resolution microscopy localizes perilipin 5 at lipid droplet-mitochondria interaction sites and at lipid droplets juxtaposing to perilipin 2. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863(11):1423–32. https://doi.org/10.1016/j.bbalip.2018.08.016.

    Article  CAS  PubMed  Google Scholar 

  66. Bosma M, Minnaard R, Sparks LM, Schaart G, Losen M, de Baets MH, et al. The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria. Histochem Cell Biol. 2012;137(2):205–16. https://doi.org/10.1007/s00418-011-0888-x.

    Article  CAS  PubMed  Google Scholar 

  67. Mason RR, Mokhtar R, Matzaris M, Selathurai A, Kowalski GM, Mokbel N, et al. PLIN5 deletion remodels intracellular lipid composition and causes insulin resistance in muscle. Mol Metab. 2014;3(6):652–63. https://doi.org/10.1016/j.molmet.2014.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Varghese M, Kimler VA, Ghazi FR, Rathore GK, Perkins GA, Ellisman MH, et al. Adipocyte lipolysis affects perilipin 5 and cristae organization at the cardiac lipid droplet-mitochondrial interface. Sci Rep. 2019;9(1):4734. https://doi.org/10.1038/s41598-019-41329-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Keenan SN, Meex RC, Lo JCY, Ryan A, Nie S, Montgomery MK, et al. Perilipin 5 deletion in hepatocytes remodels lipid metabolism and causes hepatic insulin resistance in mice. Diabetes. 2019;68(3):543–55. https://doi.org/10.2337/db18-0670.

    Article  CAS  PubMed  Google Scholar 

  70. Mason RR, Watt MJ. Unraveling the roles of PLIN5: linking cell biology to physiology. Trends Endocrinol Metab. 2015;26(3):144–52. https://doi.org/10.1016/j.tem.2015.01.005.

    Article  CAS  PubMed  Google Scholar 

  71. Wang C, Zhao Y, Gao X, Li L, Yuan Y, Liu F, et al. Perilipin 5 improves hepatic lipotoxicity by inhibiting lipolysis. Hepatology. 2015;61(3):870–82. https://doi.org/10.1002/hep.27409.

    Article  CAS  PubMed  Google Scholar 

  72. Gemmink A, Daemen S, Brouwers B, Huntjens PR, Schaart G, Moonen-Kornips E, et al. Dissociation of intramyocellular lipid storage and insulin resistance in trained athletes and type 2 diabetes patients; involvement of perilipin 5? J Physiol. 2018;596(5):857–68. https://doi.org/10.1113/jp275182.

    Article  CAS  PubMed  Google Scholar 

  73. Gemmink A, Bakker LE, Guigas B, Kornips E, Schaart G, Meinders AE, et al. Lipid droplet dynamics and insulin sensitivity upon a 5-day high-fat diet in Caucasians and South Asians. Sci Rep. 2017;7:42393. https://doi.org/10.1038/srep42393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Coen PM, Hames KC, Leachman EM, Delany JP, Ritov VB, Menshikova EV, et al. Reduced skeletal muscle oxidative capacity and elevated ceramide but not diacylglycerol content in severe obesity. Obesity. 2013;21(11):2362–71. https://doi.org/10.1002/oby.20381.

    Article  CAS  PubMed  Google Scholar 

  75. Gjelstad IMF, Haugen F, Gulseth HL, Norheim F, Jans A, Bakke SS, et al. Expression of perilipins in human skeletal muscle in vitro and in vivo in relation to diet, exercise and energy balance. Arch Physiol Biochem. 2012;118(1):22–30. https://doi.org/10.3109/13813455.2011.630009.

    Article  CAS  PubMed  Google Scholar 

  76. Peters SJ, Samjoo IA, Devries MC, Stevic I, Robertshaw HA, Tarnopolsky MA. Perilipin family (PLIN) proteins in human skeletal muscle: the effect of sex, obesity, and endurance training. Appl Physiol Nutr Metab. 2012;37(4):724–35. https://doi.org/10.1139/H2012-059.

    Article  CAS  PubMed  Google Scholar 

  77. Boutant M, Kulkarni SS, Joffraud M, Ratajczak J, Valera-Alberni M, Combe R, et al. Mfn2 is critical for brown adipose tissue thermogenic function. EMBO J. 2017;36(11):1543–58. https://doi.org/10.15252/embj.201694914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Young PA, Senkal CE, Suchanek AL, Grevengoed TJ, Lin DD, Zhao L, et al. Long-chain acyl-CoA synthetase 1 interacts with key proteins that activate and direct fatty acids into niche hepatic pathways. J Biol Chem. 2018;293(43):16724–40. https://doi.org/10.1074/jbc.RA118.004049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pidoux G, Witczak O, Jarnaess E, Myrvold L, Urlaub H, Stokka AJ, et al. Optic atrophy 1 is an A-kinase anchoring protein on lipid droplets that mediates adrenergic control of lipolysis. EMBO J. 2011;30(21):4371–86. https://doi.org/10.1038/emboj.2011.365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yeshaw WM, van der Zwaag M, Pinto F, Lahaye LL, Faber AI, Gomez-Sanchez R, et al. Human VPS13A is associated with multiple organelles and influences mitochondrial morphology and lipid droplet motility. Elife. 2019;8. https://doi.org/10.7554/eLife.43561.

  81. Freyre CAC, Rauher PC, Ejsing CS, Klemm RW. MIGA2 links mitochondria, the ER, and lipid droplets and promotes de novo lipogenesis in adipocytes. Mol Cell. 2019;76(5):811–25.e14. https://doi.org/10.1016/j.molcel.2019.09.011.

    Article  CAS  PubMed  Google Scholar 

  82. Tai ES, Ordovas JM. The role of perilipin in human obesity and insulin resistance. Curr Opin Lipidol. 2007;18(2):152–6. https://doi.org/10.1097/MOL.0b013e328086aeab.

    Article  CAS  PubMed  Google Scholar 

  83. •• Benador IY, Veliova M, Liesa M, Shirihai OS. Mitochondria bound to lipid droplets: where mitochondrial dynamics regulate lipid storage and utilization. Cell Metab. 2018;29(4):827–35. https://doi.org/10.1016/j.cmet.2019.02.011. This review discusses the regulation of mitochondrial tethering to lipid droplets.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. •• Valm AM, Cohen S, Legant WR, Melunis J, Hershberg U, Wait E, et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature. 2017;546(7656):162–7. https://doi.org/10.1038/nature22369. This is a high-impact study showing a systems-level analysis of the full organelle interactome among six different organelles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dolman NJ, Gerasimenko JV, Gerasimenko OV, Voronina SG, Petersen OH, Tepikin AV. Stable Golgi-mitochondria complexes and formation of Golgi Ca(2+) gradients in pancreatic acinar cells. J Biol Chem. 2005;280(16):15794–9. https://doi.org/10.1074/jbc.M412694200.

    Article  PubMed  Google Scholar 

  86. Wong YC, Kim S, Peng W, Krainc D. Regulation and function of mitochondria–lysosome membrane contact sites in cellular homeostasis. Trends Cell Biol. 2019;29(6):500–13. https://doi.org/10.1016/j.tcb.2019.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wong YC, Ysselstein D, Krainc D. Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature. 2018;554(7692):382–6. https://doi.org/10.1038/nature25486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fransen M, Lismont C, Walton P. The peroxisome-mitochondria connection: how and why? Int J Mol Sci. 2017;18(6). https://doi.org/10.3390/ijms18061126.

    Article  PubMed Central  Google Scholar 

  89. Fan J, Li X, Issop L, Culty M, Papadopoulos V. ACBD2/ECI2-mediated peroxisome-mitochondria interactions in Leydig cell steroid biosynthesis. Mol Endocrinol. 2016;30(7):763–82. https://doi.org/10.1210/me.2016-1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Komatsu G, Nonomura T, Sasaki M, Ishida Y, Arai S, Miyazaki T. AIM-deficient mouse fed a high-trans fat, high-cholesterol diet: a new animal model for nonalcoholic fatty liver disease. Exp Anim. 2018. https://doi.org/10.1538/expanim.18-0108.

    Article  CAS  PubMed  Google Scholar 

  91. Schrader M, Costello J, Godinho LF, Islinger M. Peroxisome-mitochondria interplay and disease. J Inherit Metab Dis. 2015;38(4):681–702. https://doi.org/10.1007/s10545-015-9819-7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Figures were adapted from SMART Servier Medical Art in accordance with the Creative Commons Attribution 3.0 Unported License.

Funding

MJW and MKM are supported by Research Fellowships from the NHMRC (APP1077703, APP1143224).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalene K. Montgomery.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Other Forms of Diabetes and Its Complications

Electronic Supplementary Material

ESM 1

(DOCX 23.2 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keenan, S.N., Watt, M.J. & Montgomery, M.K. Inter-organelle Communication in the Pathogenesis of Mitochondrial Dysfunction and Insulin Resistance. Curr Diab Rep 20, 20 (2020). https://doi.org/10.1007/s11892-020-01300-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-020-01300-4

Keywords

Navigation