Skip to main content
Log in

Organ Selective Regulation of Sympathetic Outflow by the Brain Angiotensin System

  • Adrenal and Nervous System Mechanisms (S Oparil, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Angiotensin II (Ang II) has actions on the sympathetic nervous system both as a circulating hormone acting on the circumventricular organs and also as a neurotransmitter/ neuromodulator acting within the brain. Administration of Ang II into the cerebral ventricles has diverse effects on sympathetic nerve activity (SNA), causing an increase in cardiac and splanchnic and a decrease in renal SNA. Similar contrasting effects on cardiac and renal SNA are seen with administration of hypertonic saline, which is thought to act centrally through angiotensinergic pathways. In heart failure there is compelling evidence that central angiotensinergic mechanisms contribute to the increases in cardiac and renal SNA, which have numerous detrimental effects. Although there is evidence that Ang II regulates sympathetic activity, and contributes to excess SNA in disease, the exact sites in the brain at which Ang II acts to selectively control SNA to individual organs are not well defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Stornetta RL, Hawelu-Johnson CL, Guyenet PG, Lynch KR. Astrocytes synthesize angiotensinogen in brain. Science. 1988;242(4884):1444–6.

    Article  PubMed  CAS  Google Scholar 

  2. Thomas WG, Sernia C. Immunocytochemical localization of angiotensinogen in the rat brain. Neuroscience. 1988;25(1):319–41.

    Article  PubMed  CAS  Google Scholar 

  3. Yang G, Gray TS, Sigmund CD, Cassell MD. The angiotensinogen gene is expressed in both astrocytes and neurons in murine central nervous system. Brain Res. 1999;817(1–2):123–31.

    Article  PubMed  CAS  Google Scholar 

  4. Grobe JL, Xu D, Sigmund CD. An intracellular renin-angiotensin system in neurons: fact, hypothesis, or fantasy. Physiology (Bethesda). 2008;23:187–93.

    Article  CAS  Google Scholar 

  5. Allen AM, Zhuo J, Mendelsohn FA. Localization and function of angiotensin AT1 receptors. Am J Hypertens. 2000;13(1 Pt 2):31S–8.

    Article  PubMed  CAS  Google Scholar 

  6. Lenkei Z, Palkovits M, Corvol P, Llorens-Cortes C. Expression of angiotensin type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain: a functional neuroanatomical review. Front Neuroendocrinol. 1997;18(4):383–439.

    Article  PubMed  CAS  Google Scholar 

  7. Zucker IH, Schultz HD, Patel KP, Wang W, Gao L. Regulation of central angiotensin type 1 receptors and sympathetic outflow in heart failure. Am J Physiol Heart Circ Physiol. 2009;297(5):H1557–66.

    Article  PubMed  CAS  Google Scholar 

  8. Sriramula S, Cardinale JP, Lazartigues E, Francis J. ACE2 overexpression in the paraventricular nucleus attenuates angiotensin II-induced hypertension. Cardiovasc Res. 2011;92(3):401–8.

    Article  PubMed  CAS  Google Scholar 

  9. Xiao L, Gao L, Lazartigues E, Zucker IH. Brain-selective overexpression of angiotensin-converting enzyme 2 attenuates sympathetic nerve activity and enhances baroreflex function in chronic heart failure. Hypertension. 2011;58(6):1057–65.

    Article  PubMed  CAS  Google Scholar 

  10. Guimaraes PS, Santiago NM, Xavier CH, Velloso EP, Fontes MA, Santos RA, et al. Chronic infusion of angiotensin-(1–7) into the lateral ventricle of the brain attenuates hypertension in DOCA-salt rats. Am J Physiol Heart Circ Physiol. 2012;303(3):H393–400.

    Article  PubMed  CAS  Google Scholar 

  11. Bickerton RK, Buckley JP. Evidence for a central mechanism in angiotensin-induced hypertension. Proc Soc Exp Biol Med. 1961;106:834–6.

    Article  CAS  Google Scholar 

  12. Yu R, Dickinson CJ. Neurogenic effects of angiotensin. Lancet. 1965;2(7425):1276–7.

    Article  PubMed  CAS  Google Scholar 

  13. Ferrario CM, Dickinson CJ, McCubbin JW. Central vasomotor stimulation by angiotensin. Clin Sci. 1970;39(2):239–45.

    PubMed  CAS  Google Scholar 

  14. Yao ST, May CN. Intra-carotid angiotensin II activates tyrosine hydroxylase expressing rostral ventrolateral medulla neurons following blood–brain barrier disruption in rats. Neuroscience. 2013. doi:10.1016/j.neuroscience.2013.04.023.

  15. McKinley MJ, Badoer E, Oldfield BJ. Intravenous angiotensin II induces Fos-immunoreactivity in circumventricular organs of the lamina terminalis. Brain Res. 1992;594(2):295–300.

    Article  PubMed  CAS  Google Scholar 

  16. Davern PJ, Head GA. Fos-related antigen immunoreactivity after acute and chronic angiotensin II-induced hypertension in the rabbit brain. Hypertension. 2007;49(5):1170–7.

    Article  PubMed  CAS  Google Scholar 

  17. Severs WB, Daniels AE, Smookler HH, Kinnard WJ, Buckley JP. Interrelationship between angiotensin II and the sympathetic nervous system. J Pharmacol Exp Ther. 1966;153(3):530–7.

    PubMed  CAS  Google Scholar 

  18. Andersson B, Eriksson L. Conjoint action of sodium and angiotensin on brain mechanisms controlling water and salt balances. Acta Physiol Scand. 1971;81(1):18–29.

    Article  PubMed  CAS  Google Scholar 

  19. May CN, McAllen RM. Baroreceptor-independent renal nerve inhibition by intracerebroventricular angiotensin II in conscious sheep. Am J Physiol. 1997;273(2 Pt 2):R560–7.

    PubMed  CAS  Google Scholar 

  20. Kannan H, Nakamura T, Jin XJ, Hayashida Y, Yamashita H. Effects of centrally administered angiotensin on sympathetic nerve activity and blood flow to the kidney in conscious rats. J Auton Nerv Syst. 1991;34(2–3):201–10.

    Article  PubMed  CAS  Google Scholar 

  21. Jin XJ, Kannan H, Hayashida Y, Nakamura T, Higashino H, Yamashita H. Inhibition of renal sympathetic nerve activity of anesthetized rats by intracerebroventricular administration of angiotensin II. J UOEH. 1989;11(4):361–70.

    PubMed  CAS  Google Scholar 

  22. Unger T, Becker H, Petty M, Demmert G, Schneider B, Ganten D, et al. Differential effects of central angiotensin II and substance P on sympathetic nerve activity in conscious rats. Implications for cardiovascular adaptation to behavioral responses. Circ Res. 1985;56(4):563–75.

    Article  PubMed  CAS  Google Scholar 

  23. Watson AM, Mogulkoc R, McAllen RM, May CN. Stimulation of cardiac sympathetic nerve activity by central angiotensinergic mechanisms in conscious sheep. Am J Physiol Regul Integr Comp Physiol. 2004;286(6):R1051–6.

    Article  PubMed  CAS  Google Scholar 

  24. Eriksson L, Fyhrquist F. Plasma renin activity following central infusion of angiotensin II and altered CSF sodium concentration in the conscious goat. Acta Physiol Scand. 1976;98(2):209–16.

    Article  PubMed  CAS  Google Scholar 

  25. May CN, McAllen RM. Brain angiotensinergic pathways mediate renal nerve inhibition by central hypertonic NaCl in conscious sheep. Am J Physiol. 1997;272(2 Pt 2):R593–600.

    PubMed  CAS  Google Scholar 

  26. Andersson B, Eriksson L, Fernandez O, Kolmodin CG, Oltner R. Centrally mediated effects of sodium and angiotensin II on arterial blood pressure and fluid balance. Acta Physiol Scand. 1972;85(3):398–407.

    Article  PubMed  CAS  Google Scholar 

  27. Severs WB, Daniels-Severs A, Summy-Long J, Radio GJ. Effects of centrally administered angiotensin II on salt and water excretion. Pharmacology. 1971;6(4):242–52.

    Article  PubMed  CAS  Google Scholar 

  28. Dorward PK, Rudd CD. Influence of brain renin-angiotensin system on renal sympathetic and cardiac baroreflexes in conscious rabbits. Am J Physiol. 1991;260(3 Pt 2):H770–8.

    PubMed  CAS  Google Scholar 

  29. Allen AM, Dampney RA, Mendelsohn FA. Angiotensin receptor binding and pressor effects in cat subretrofacial nucleus. Am J Physiol. 1988;255(5 Pt 2):H1011–7.

    PubMed  CAS  Google Scholar 

  30. Joy MD, Lowe RD. Evidence that the area postrema mediates the central cardiovascular response to angiotensin II. Nature. 1970;228(5278):1303–4.

    Article  PubMed  CAS  Google Scholar 

  31. • Xu L, Brooks VL. ANG II chronically supports renal and lumbar sympathetic activity in sodium-deprived, conscious rats. Am J Physiol. 1996;271(6 Pt 2):H2591–8. This study demonstrated that a physiological stimulus, sodium depletion, caused increases in RSNA, LSNA and heart rate that were chrinicclay supported by endogenous angiotensin.

    PubMed  CAS  Google Scholar 

  32. Xu L, Collister JP, Osborn JW, Brooks VL. Endogenous ANG II supports lumbar sympathetic activity in conscious sodium-deprived rats: role of area postrema. Am J Physiol. 1998;275(1 Pt 2):R46–55.

    PubMed  CAS  Google Scholar 

  33. Yoshimoto M, Miki K, Fink GD, King A, Osborn JW. Chronic angiotensin II infusion causes differential responses in regional sympathetic nerve activity in rats. Hypertension. 2010;55(3):644–51.

    Article  PubMed  CAS  Google Scholar 

  34. • Moretti JL, Burke SL, Davern PJ, Evans RG, Lambert GW, Head GA. Renal sympathetic activation from long-term low-dose angiotensin II infusion in rabbits. J Hypertens. 2012;30(3):551–60. This study demonstrated that a low, initially non-pressor, infusion of angiotensin caused a modest progressive increase in arterial pressure accompanied by a substantial increase in RSNA. In these animals they also showed activation of central neurons in brain sites important in autonomic control.

    Article  PubMed  CAS  Google Scholar 

  35. Barrett CJ, Ramchandra R, Guild SJ, Lala A, Budgett DM, Malpas SC. What sets the long-term level of renal sympathetic nerve activity: a role for angiotensin II and baroreflexes? Circ Res. 2003;92(12):1330–6.

    Article  PubMed  CAS  Google Scholar 

  36. Hood SG, Cochrane T, McKinley MJ, May CN. Investigation of the mechanisms by which chronic infusion of an acutely subpressor dose of angiotensin II induces hypertension. Am J Physiol Regul Integr Comp Physiol. 2007;292(5):R1893–9.

    Article  PubMed  CAS  Google Scholar 

  37. Osborn JW, Fink GD. Region-specific changes in sympathetic nerve activity in angiotensin II-salt hypertension in the rat. Exp Physiol. 2010;95(1):61–8.

    Article  PubMed  CAS  Google Scholar 

  38. Guild SJ, McBryde FD, Malpas SC, Barrett CJ. High dietary salt and angiotensin II chronically increase renal sympathetic nerve activity: a direct telemetric study. Hypertension. 2012;59(3):614–20.

    Article  PubMed  CAS  Google Scholar 

  39. King AJ, Osborn JW, Fink GD. Splanchnic circulation is a critical neural target in angiotensin II salt hypertension in rats. Hypertension. 2007;50(3):547–56.

    Article  PubMed  CAS  Google Scholar 

  40. • Foss JD, Fink GD, Osborn JW. Reversal of genetic salt-sensitive hypertension by targeted sympathetic ablation. Hypertension. 2013;61(4):806–11. This paper demonstrated that celiac denervation attenuated DOCA -salt htpertension, as they had shown for angiotensin-salt hypertension (ref 38),These findings indicate the important role of the splanchnic sympathetic nerves and splanchnic vascular bed in the development of hypertension.

    Article  PubMed  CAS  Google Scholar 

  41. Bruner CA, Fink GD. Neurohumoral contributions to chronic angiotensin-induced hypertension. Am J Physiol. 1986;250(1 Pt 2):H52–61.

    PubMed  CAS  Google Scholar 

  42. Fitzsimons JT. Angiotensin stimulation of the central nervous system. Rev Physiol Biochem Pharmacol. 1980;87:117–67.

    Article  PubMed  CAS  Google Scholar 

  43. McKinley MJ, Denton DA, Leksell L, Tarjan E, Weisinger RS. Evidence for cerebral sodium sensors involved in water drinking in sheep. Physiol Behav. 1980;25(4):501–4.

    Article  PubMed  CAS  Google Scholar 

  44. Mouw DR, Vander AJ. Evidence for brain Na receptors controlling renal Na excretion and plasma renin activity. Am J Physiol. 1970;219(3):822–32.

    PubMed  CAS  Google Scholar 

  45. Simpson JB, Routtenberg A. Subfornical organ: site of drinking elicitation by angiotensin II. Science. 1973;181(4105):1172–5.

    Article  PubMed  CAS  Google Scholar 

  46. Blair-West JR, Burns P, Denton DA, Ferraro T, McBurnie MI, Tarjan E, et al. Thirst induced by increasing brain sodium concentration is mediated by brain angiotensin. Brain Res. 1994;637(1–2):335–8.

    Article  PubMed  CAS  Google Scholar 

  47. McKinley MJ, Evered M, Mathai M, Coghlan JP. Effects of central losartan on plasma renin and centrally mediated natriuresis. Kidney Int. 1994;46(6):1479–82.

    Article  PubMed  CAS  Google Scholar 

  48. Rohmeiss P, Beyer C, Hocher B, Qadri F, Gretz N, Strauch M, et al. Osmotically induced natriuresis and blood pressure response involves angiotensin AT1 receptors in the subfornical organ. J Hypertens. 1995;13(12 Pt 1):1399–404.

    PubMed  CAS  Google Scholar 

  49. Frithiof R, Eriksson S, Bayard F, Svensson T, Rundgren M. Intravenous hypertonic NaCl acts via cerebral sodium-sensitive and angiotensinergic mechanisms to improve cardiac function in haemorrhaged conscious sheep. J Physiol. 2007;583(Pt 3):1129–43.

    Article  PubMed  CAS  Google Scholar 

  50. • Frithiof R, Ramchandra R, Hood SG, May CN. Hypertonic sodium resuscitation after hemorrhage improves hemodynamic function by stimulating cardiac, but not renal, sympathetic nerve activity. Am J Physiol Heart Circ Physiol. 2011;300(2):H685–92. Resuscitation of hemorrhage with intracarotid hypertonic slaine, which acts centrally through angiotensinergic mechanisms, caused a large increase in cardiac sympathetic nerve activity but had no effect on renal sympathetic neve activity. This demonstrates the differential central control of these symapthetic outflows.

    Article  PubMed  CAS  Google Scholar 

  51. Briest W, Holzl A, Rassler B, Deten A, Leicht M, Baba HA, et al. Cardiac remodeling after long term norepinephrine treatment in rats. Cardiovasc Res. 2001;52(2):265–73.

    Article  PubMed  CAS  Google Scholar 

  52. Kaye DM, Lefkovits J, Jennings GL, Bergin P, Broughton A, Esler MD. Adverse consequences of high sympathetic nervous activity in the failing human heart. J Am Coll Cardiol. 1995;26(5):1257–63.

    Article  PubMed  CAS  Google Scholar 

  53. Clayton SC, Haack KK, Zucker IH. Renal denervation modulates angiotensin receptor expression in the renal cortex of rabbits with chronic heart failure. Am J Physiol Renal Physiol. 2011;300(1):F31–9.

    Article  PubMed  CAS  Google Scholar 

  54. Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation. 1986;73(4):615–21.

    Article  PubMed  CAS  Google Scholar 

  55. Rundqvist B, Elam M, Bergmann-Sverrisdottir Y, Eisenhofer G, Friberg P. Increased cardiac adrenergic drive precedes generalized sympathetic activation in human heart failure. Circulation. 1997;95(1):169–75.

    Article  PubMed  CAS  Google Scholar 

  56. DiBona GF, Sawin LL. Increased renal nerve activity in cardiac failure: arterial vs. cardiac baroreflex impairment. Am J Physiol. 1995;268(1 Pt 2):R112–6.

    PubMed  CAS  Google Scholar 

  57. Murakami H, Liu JL, Zucker IH. Angiotensin II blockade [corrected] enhances baroreflex control of sympathetic outflow in heart failure. Hypertension. 1997;29(2):564–9.

    Article  PubMed  CAS  Google Scholar 

  58. Watson AM, Hood SG, Ramchandra R, McAllen RM, May CN. Increased cardiac sympathetic nerve activity in heart failure is not due to desensitization of the arterial baroreflex. Am J Physiol Heart Circ Physiol. 2007;293(1):H798–804.

    Article  PubMed  CAS  Google Scholar 

  59. • Ramchandra R, Hood SG, Denton DA, Woods RL, McKinley MJ, McAllen RM, et al. Basis for the preferential activation of cardiac sympathetic nerve activity in heart failure. Proc Natl Acad Sci U S A. 2009;106(3):924–8. This paper showed that basal levels of directly recorded CSNA were set lower than RSNA in conscious sheep, but in ovine mild heart failure there was a large increase in cardiac but not renal SNA. These findings indicated that different central mexchanism determine basal SNA and the changes in SNA in heart failure.

    Article  PubMed  CAS  Google Scholar 

  60. Gao L, Li Y, Schultz HD, Wang WZ, Wang W, Finch M, et al. Downregulated Kv4.3 expression in the RVLM as a potential mechanism for sympathoexcitation in rats with chronic heart failure. Am J Physiol Heart Circ Physiol. 2010;298(3):H945–55.

    Article  PubMed  CAS  Google Scholar 

  61. Kar S, Gao L, Belatti DA, Curry PL, Zucker IH. Central angiotensin (1–7) enhances baroreflex gain in conscious rabbits with heart failure. Hypertension. 2011;58(4):627–34.

    Article  PubMed  CAS  Google Scholar 

  62. Wang W, Ma R. Cardiac sympathetic afferent reflexes in heart failure. Heart Fail Rev. 2000;5(1):57–71.

    Article  PubMed  CAS  Google Scholar 

  63. Gao L, Wang W, Li YL, Schultz HD, Liu D, Cornish KG, et al. Sympathoexcitation by central ANG II: roles for AT1 receptor upregulation and NAD(P)H oxidase in RVLM. Am J Physiol Heart Circ Physiol. 2005;288(5):H2271–9.

    Article  PubMed  CAS  Google Scholar 

  64. Tan J, Wang H, Leenen FH. Increases in brain and cardiac AT1 receptor and ACE densities after myocardial infarct in rats. Am J Physiol Heart Circ Physiol. 2004;286(5):H1665–71.

    Article  PubMed  CAS  Google Scholar 

  65. Yoshimura R, Sato T, Kawada T, Shishido T, Inagaki M, Miyano H, et al. Increased brain angiotensin receptor in rats with chronic high-output heart failure. J Card Fail. 2000;6(1):66–72.

    Article  PubMed  CAS  Google Scholar 

  66. DiBona GF, Jones SY, Brooks VL. ANG II receptor blockade and arterial baroreflex regulation of renal nerve activity in cardiac failure. Am J Physiol. 1995;269(5 Pt 2):R1189–96.

    PubMed  CAS  Google Scholar 

  67. Zhang W, Huang BS, Leenen FH. Brain renin-angiotensin system and sympathetic hyperactivity in rats after myocardial infarction. Am J Physiol. 1999;276(5 Pt 2):H1608–15.

    PubMed  CAS  Google Scholar 

  68. • Ramchandra R, Hood SG, Watson AM, Allen AM, May CN. Central angiotensin type 1 receptor blockade decreases cardiac but not renal sympathetic nerve activity in heart failure. Hypertension. 2012;59(3):634–41. Central administration of losartan significantly reduced CSNA and heart rate, but not RSNA, in conscious sheep in heart failure, demonstrating the critical role of central angiotensinergic mechanisms in determining sympathetic activition to the heart in heart failure.

    Article  PubMed  CAS  Google Scholar 

  69. Zhang ZH, Francis J, Weiss RM, Felder RB. The renin-angiotensin-aldosterone system excites hypothalamic paraventricular nucleus neurons in heart failure. Am J Physiol Heart Circ Physiol. 2002;283(1):H423–33.

    PubMed  CAS  Google Scholar 

  70. Patel KP. Role of paraventricular nucleus in mediating sympathetic outflow in heart failure. Heart Fail Rev. 2000;5(1):73–86.

    Article  PubMed  CAS  Google Scholar 

  71. Zhang K, Li YF, Patel KP. Reduced endogenous GABA-mediated inhibition in the PVN on renal nerve discharge in rats with heart failure. Am J Physiol Regul Integr Comp Physiol. 2002;282(4):R1006–15.

    PubMed  CAS  Google Scholar 

  72. Li YF, Patel KP. Paraventricular nucleus of the hypothalamus and elevated sympathetic activity in heart failure: the altered inhibitory mechanisms. Acta Physiol Scand. 2003;177(1):17–26.

    Article  PubMed  CAS  Google Scholar 

  73. Zheng H, Li YF, Wang W, Patel KP. Enhanced angiotensin-mediated excitation of renal sympathetic nerve activity within the paraventricular nucleus of anesthetized rats with heart failure. Am J Physiol Regul Integr Comp Physiol. 2009;297(5):R1364–74.

    Article  PubMed  CAS  Google Scholar 

  74. Hirooka Y, Shigematsu H, Kishi T, Kimura Y, Ueta Y, Takeshita A. Reduced nitric oxide synthase in the brainstem contributes to enhanced sympathetic drive in rats with heart failure. J Cardiovasc Pharmacol. 2003;42 Suppl 1:S111–5.

    Article  PubMed  CAS  Google Scholar 

  75. Wang Y, Patel KP, Cornish KG, Channon KM, Zucker IH. nNOS gene transfer to RVLM improves baroreflex function in rats with chronic heart failure. Am J Physiol Heart Circ Physiol. 2003;285(4):H1660–7.

    PubMed  CAS  Google Scholar 

  76. Gao L, Wang WZ, Wang W, Zucker IH. Imbalance of angiotensin type 1 receptor and angiotensin II type 2 receptor in the rostral ventrolateral medulla: potential mechanism for sympathetic overactivity in heart failure. Hypertension. 2008;52(4):708–14.

    Article  PubMed  CAS  Google Scholar 

  77. Kar S, Gao L, Zucker IH. Exercise training normalizes ACE and ACE2 in the brain of rabbits with pacing-induced heart failure. J Appl Physiol. 2010;108(4):923–32.

    Article  PubMed  CAS  Google Scholar 

  78. Ramchandra R, Hood SG, Frithiof R, McKinley MJ, May CN. The role of the paraventricular nucleus of the hypothalamus in the regulation of cardiac and renal sympathetic nerve activity in conscious normal and heart failure sheep. J Physiol. 2013;591(Pt 1):93–107.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the expert technical assistance of Alan McDonald and Tony Dornom. This work was supported by National Health and Medical Research Council of Australia Grant 628573 and the Victorian Government's Operational Infrastructure Support Program. R. Ramchandra was the recipient of National Heart Foundation Postdoctoral Fellowship 09 M 4930, and C.N. May was supported by National Health and Medical Research Council Research Fellowships 350328 and 566819.

Conflict of Interest

Rohit Ramchandra, Song T. Yao, and Clive N. May declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clive N. May.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramchandra, R., Yao, S.T. & May, C.N. Organ Selective Regulation of Sympathetic Outflow by the Brain Angiotensin System. Curr Hypertens Rep 15, 401–408 (2013). https://doi.org/10.1007/s11906-013-0355-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-013-0355-2

Keywords

Navigation