Skip to main content

Advertisement

Log in

Cardiovascular Disease Risk Reduction and Body Mass Index

  • Hypertension and Obesity (E Reisin, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Anti-hypertensive and lipid lowering therapy addresses only half of the cardiovascular disease risk in patients with body mass index > 30 kg/m2, i.e., obesity. We examine newer aspects of obesity pathobiology that underlie the partial effectiveness of anti-hypertensive lipid lowering therapy for the reduction of cardiovascular disease risk in obesity.

Recent Findings

Obesity-related insulin resistance, vascular endothelium dysfunction, increased sympathetic nervous system/renin–angiotensin–aldosterone system activity, and glomerulopathy lead to type 2 diabetes, coronary atherosclerosis, and chronic disease kidney disease that besides hypertension and dyslipidemia increase cardiovascular disease risk.

Summary

Obesity increases cardiovascular disease risk through multiple pathways. Optimal reduction of cardiovascular disease risk in patients with obesity is likely to require therapy targeted at both obesity and obesity-associated conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Ward ZJ, Bleich SN, Cradock AL, et al. Projected U.S. state-level prevalence of adult obesity and severe obesity. N Engl J Med. 2019;381(25):2440–50.

    Article  PubMed  Google Scholar 

  2. Finkelstein EA, Khavjou OA, Thompson H, et al. Obesity and severe obesity forecasts through 2030. Am J Prev Med. 2012;42(6):563–70.

    Article  PubMed  Google Scholar 

  3. Pantalone KM, Hobbs TM, Chagin KM, et al. Prevalence and recognition of obesity and its associated comorbidities: cross-sectional analysis of electronic health record data from a large US integrated health system. BMJ Open. 2017;7(11):e017583.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Libby P. The changing landscape of atherosclerosis. Nature. 2021;592(7855):524–33.

    Article  CAS  PubMed  Google Scholar 

  5. Kivimaki M, Strandberg T, Pentti J, et al. Body-mass index and risk of obesity-related complex multimorbidity: an observational multicohort study. Lancet Diabetes Endocrinol. 2022.

  6. •• Hall JE, Mouton AJ, da Silva AA, et al. Obesity, kidney dysfunction, and inflammation: interactions in hypertension. Cardiovasc Res. 2021;117(8):1859–76. Nice summary of the contribution of obesity, inflammation, and hypertension to the development and progression of chronic renal disease.

  7. Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. The disease burden associated with overweight and obesity. JAMA. 1999;282(16):1523–9.

    Article  CAS  PubMed  Google Scholar 

  8. Nguyen NT, Magno CP, Lane KT, Hinojosa MW, Lane JS. Association of hypertension, diabetes, dyslipidemia, and metabolic syndrome with obesity: findings from the National Health and Nutrition Examination Survey, 1999 to 2004. J Am Coll Surg. 2008;207(6):928–34.

    Article  PubMed  Google Scholar 

  9. Bays HE, Chapman RH, Grandy S, Group SI. The relationship of body mass index to diabetes mellitus, hypertension and dyslipidaemia: comparison of data from two national surveys. Int J Clin Pract. 2007;61(5):737–47.

    Article  CAS  PubMed  Google Scholar 

  10. Hossain P, Kawar B, El Nahas M. Obesity and diabetes in the developing world–a growing challenge. N Engl J Med. 2007;356(3):213–5.

    Article  CAS  PubMed  Google Scholar 

  11. Fontaine KR, Redden DT, Wang C, Westfall AO, Allison DB. Years of life lost due to obesity. JAMA. 2003;289(2):187–93.

    Article  PubMed  Google Scholar 

  12. Kitahara CM, Flint AJ, Berrington de Gonzalez A, et al. Association between class III obesity (BMI of 40–59 kg/m2) and mortality: a pooled analysis of 20 prospective studies. PLoS Med. 2014;11(7):e1001673.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Khan SS, Ning H, Wilkins JT, et al. Association of body mass index with lifetime risk of cardiovascular disease and compression of morbidity. JAMA Cardiol. 2018;3(4):280–7.

    Article  PubMed  PubMed Central  Google Scholar 

  14. DeVallance E, Fournier SB, Donley DA, et al. Is obesity predictive of cardiovascular dysfunction independent of cardiovascular risk factors? Int J Obes (Lond). 2015;39(2):244–53.

    Article  CAS  Google Scholar 

  15. Ndumele CE, Matsushita K, Lazo M, et al. Obesity and subtypes of incident cardiovascular disease. J Am Heart Assoc. 2016;5(8).

  16. Gill D, Zuber V, Dawson J, et al. Risk factors mediating the effect of body mass index and waist-to-hip ratio on cardiovascular outcomes: Mendelian randomization analysis. Int J Obes (Lond). 2021;45(7):1428–38.

    Article  CAS  Google Scholar 

  17. Stenholm S, Head J, Aalto V, et al. Body mass index as a predictor of healthy and disease-free life expectancy between ages 50 and 75: a multicohort study. Int J Obes (Lond). 2017;41(5):769–75.

    Article  CAS  Google Scholar 

  18. Lumsden RH, Pagidipati NJ, Phelan MP, Chiswell K, Peterson ED. Prevalence and management of adult obesity in a large U.S. Academic Health System. Am J Prev Med. 2020;58(6):817–24.

    Article  PubMed  Google Scholar 

  19. Lemay CA, Cashman S, Savageau J, Fletcher K, Kinney R, Long-Middleton E. Underdiagnosis of obesity at a community health center. J Am Board Fam Pract. 2003;16(1):14–21.

    Article  PubMed  Google Scholar 

  20. Bray GA, Kim KK, Wilding JPH, World Obesity F. Obesity: a chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes Rev. 2017;18(7):715–23.

    Article  CAS  PubMed  Google Scholar 

  21. Velazquez A, Apovian CM. Updates on obesity pharmacotherapy. Ann N Y Acad Sci. 2018;1411(1):106–19.

    Article  PubMed  Google Scholar 

  22. Ammori BJ, Skarulis MC, Soran H, Syed AA, Eledrisi M, Malik RA. Medical and surgical management of obesity and diabetes: what’s new? Diabet Med. 2020;37(2):203–10.

    Article  CAS  PubMed  Google Scholar 

  23. Muntner P, Hardy ST, Fine LJ, et al. Trends in blood pressure control among US adults with hypertension, 1999–2000 to 2017–2018. JAMA. 2020;324(12):1190–200.

    Article  PubMed  Google Scholar 

  24. Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS Data Brief. 2020;360:1–8.

    Google Scholar 

  25. Landsberg L, Aronne LJ, Beilin LJ, et al. Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment–a position paper of the The Obesity Society and The American Society of Hypertension. Obesity (Silver Spring). 2013;21(1):8–24.

    Article  Google Scholar 

  26. Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res. 2015;116(6):991–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Koenen M, Hill MA, Cohen P, Sowers JR. Obesity, adipose tissue and vascular dysfunction. Circ Res. 2021;128(7):951–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harrison DG, Coffman TM, Wilcox CS. Pathophysiology of hypertension: the mosaic theory and beyond. Circ Res. 2021;128(7):847–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shams E, Kamalumpundi V, Peterson J, Gismondi RA, Oigman W, de Gusmao Correia ML. Highlights of mechanisms and treatment of obesity-related hypertension. J Hum Hypertens. 2022.

  30. Oliveira V, Kwitek AE, Sigmund CD, Morselli LL, Grobe JL. Recent advances in hypertension: intersection of metabolic and blood pressure regulatory circuits in the central nervous system. Hypertension. 2021;77(4):1061–8.

    Article  CAS  PubMed  Google Scholar 

  31. Kaze AD, Musani SK, Bidulescu A, et al. Plasma leptin and blood pressure progression in Blacks: the Jackson Heart Study. Hypertension. 2021;77(4):1069–75.

    Article  CAS  PubMed  Google Scholar 

  32. Weisbrod RM, Shiang T, Al Sayah L, et al. Arterial stiffening precedes systolic hypertension in diet-induced obesity. Hypertension. 2013;62(6):1105–10.

    Article  CAS  PubMed  Google Scholar 

  33. Agbaje AO, Barker AR, Tuomainen TP. Effects of arterial stiffness and carotid intima-media thickness progression on the risk of overweight/obesity and elevated blood pressure/hypertension: a cross-lagged cohort study. Hypertension. 2022;79(1):159–69.

    Article  CAS  PubMed  Google Scholar 

  34. Izzo R, Losi MA, Stabile E, et al. Development of left ventricular hypertrophy in treated hypertensive outpatients: the Campania Salute Network. Hypertension. 2017;69(1):136–42.

    Article  CAS  PubMed  Google Scholar 

  35. Lonnebakken MT, Mancusi C, Losi MA, et al. Weight loss facilitates reduction of left ventricular mass in obese hypertensive patients: the Campania Salute Network. Nutr Metab Cardiovasc Dis. 2019;29(2):185–90.

    Article  CAS  PubMed  Google Scholar 

  36. de Simone G, Devereux RB, Izzo R, et al. Lack of reduction of left ventricular mass in treated hypertension: the strong heart study. J Am Heart Assoc. 2013;2(3):e000144.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lauer MS, Anderson KM, Kannel WB, Levy D. The impact of obesity on left ventricular mass and geometry. The Framingham Heart Study. JAMA. 1991;266(2):231–6.

    Article  CAS  PubMed  Google Scholar 

  38. Woodiwiss AJ, Libhaber CD, Majane OH, Libhaber E, Maseko M, Norton GR. Obesity promotes left ventricular concentric rather than eccentric geometric remodeling and hypertrophy independent of blood pressure. Am J Hypertens. 2008;21(10):1144–51.

    Article  PubMed  Google Scholar 

  39. Turkbey EB, McClelland RL, Kronmal RA, et al. The impact of obesity on the left ventricle: the Multi-Ethnic Study of Atherosclerosis (MESA). JACC Cardiovasc Imaging. 2010;3(3):266–74.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Neeland IJ, Gupta S, Ayers CR, et al. Relation of regional fat distribution to left ventricular structure and function. Circ Cardiovasc Imaging. 2013;6(5):800–7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wilner B, Garg S, Ayers CR, et al. Dynamic relation of changes in weight and indices of fat distribution with cardiac structure and function: the Dallas Heart Study. J Am Heart Assoc. 2017;6(7).

  42. Cai A, Liu L, Zhou D, Zhou Y, Tang S, Feng Y. The patterns of left ventricular alteration by adipose tissue distribution: implication for heart failure prevention. ESC Heart Fail. 2021;8(4):3093–105.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sciacqua A, Cimellaro A, Mancuso L, et al. Different patterns of left ventricular hypertrophy in metabolically healthy and insulin-resistant obese subjects. Nutrients. 2020;12(2).

  44. Efremov L, Lacruz ME, Tiller D, et al. Metabolically healthy, but obese individuals and associations with echocardiographic parameters and inflammatory biomarkers: results from the CARLA Study. Diabetes Metab Syndr Obes. 2020;13:2653–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Berenson GS, Srinivasan SR. Emergence of obesity and cardiovascular risk for coronary artery disease: the Bogalusa Heart Study. Prev Cardiol. 2001;4(3):116–21.

    Article  CAS  PubMed  Google Scholar 

  46. Reis JP, Allen N, Gibbs BB, et al. Association of the degree of adiposity and duration of obesity with measures of cardiac structure and function: the CARDIA study. Obesity (Silver Spring). 2014;22(11):2434–40.

    Article  Google Scholar 

  47. Markus MR, Werner N, Schipf S, et al. Changes in body weight and composition are associated with changes in left ventricular geometry and function in the general population: SHIP (Study of Health in Pomerania). Circ Cardiovasc Imaging. 2017;10(3):e005544.

    Article  PubMed  Google Scholar 

  48. Yan Y, Li S, Guo Y, et al. Life-course cumulative burden of body mass index and blood pressure on progression of left ventricular mass and geometry in midlife: the Bogalusa Heart Study. Circ Res. 2020;126(5):633–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Woodiwiss AJ, Norton GR. Obesity and left ventricular hypertrophy: the hypertension connection. Curr Hypertens Rep. 2015;17(4):539.

    Article  PubMed  Google Scholar 

  50. Rohm TV, Meier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes, and related disorders. Immunity. 2022;55(1):31–55.

    Article  CAS  PubMed  Google Scholar 

  51. Lima MM, Pareja JC, Alegre SM, et al. Visceral fat resection in humans: effect on insulin sensitivity, beta-cell function, adipokines, and inflammatory markers. Obesity (Silver Spring). 2013;21(3):E182–9.

    Article  CAS  Google Scholar 

  52. Tsaban G, Yaskolka Meir A, Zelicha H, et al. Diet-induced fasting ghrelin elevation reflects the recovery of insulin sensitivity and visceral adiposity regression. J Clin Endocrinol Metab. 2022;107(2):336–45.

    Article  PubMed  Google Scholar 

  53. McLaughlin T, Liu LF, Lamendola C, et al. T-cell profile in adipose tissue is associated with insulin resistance and systemic inflammation in humans. Arterioscler Thromb Vasc Biol. 2014;34(12):2637–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. James DE, Stockli J, Birnbaum MJ. The aetiology and molecular landscape of insulin resistance. Nat Rev Mol Cell Biol. 2021;22(11):751–71.

    Article  CAS  PubMed  Google Scholar 

  55. Beppu LY, Mooli RGR, Qu X, et al. Tregs facilitate obesity and insulin resistance via a Blimp-1/IL-10 axis. JCI Insight. 2021;6(3).

  56. Biswas D, Tozer K, Dao KT, et al. Adverse Outcomes in obese cardiac surgery patients correlates with altered branched-chain amino acid catabolism in adipose tissue and heart. Front Endocrinol (Lausanne). 2020;11:534.

    Article  Google Scholar 

  57. de Mello AH, Costa AB, Engel JDG, Rezin GT. Mitochondrial dysfunction in obesity. Life Sci. 2018;192:26–32.

    Article  PubMed  Google Scholar 

  58. •• Cypess AM. Reassessing human adipose tissue. N Engl J Med. 2022;386(8):768–79. Recent review of the functional roles of human adipose tissue

  59. Di Meo S, Iossa S, Venditti P. Skeletal muscle insulin resistance: role of mitochondria and other ROS sources. J Endocrinol. 2017;233(1):R15–42.

    Article  PubMed  Google Scholar 

  60. Lepretti M, Martucciello S, Burgos Aceves MA, Putti R, Lionetti L. Omega-3 fatty acids and insulin resistance: focus on the regulation of mitochondria and endoplasmic reticulum stress. Nutrients. 2018;10(3).

  61. Fuchs A, Samovski D, Smith GI, et al. Associations among adipose tissue immunology, inflammation, exosomes and insulin sensitivity in people with obesity and nonalcoholic fatty liver disease. Gastroenterology. 2021;161(3):968–81 e12.

    Article  CAS  PubMed  Google Scholar 

  62. Klein S, Gastaldelli A, Yki-Jarvinen H, Scherer PE. Why does obesity cause diabetes? Cell Metab. 2022;34(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  63. Hoddy KK, Axelrod CL, Mey JT, et al. Insulin resistance persists despite a metabolically healthy obesity phenotype. Obesity (Silver Spring). 2022;30(1):39–44.

    Article  CAS  Google Scholar 

  64. Conway BN, Han X, Munro HM, et al. The obesity epidemic and rising diabetes incidence in a low-income racially diverse southern US cohort. PLoS ONE. 2018;13(1):e0190993.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Javed Z, Valero-Elizondo J, Maqsood MH, et al. Social determinants of health and obesity: findings from a national study of US adults. Obesity (Silver Spring). 2022;30(2):491–502.

    Article  Google Scholar 

  66. Joseph JJ, Kluwe B, Echouffo-Tcheugui JB, et al. Association of adiposity with incident diabetes among Black adults in the Jackson Heart Study. J Am Heart Assoc. 2021;10(18):e020716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pillon NJ, Loos RJF, Marshall SM, Zierath JR. Metabolic consequences of obesity and type 2 diabetes: balancing genes and environment for personalized care. Cell. 2021;184(6):1530–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Loos RJ. The genetics of adiposity. Curr Opin Genet Dev. 2018;50:86–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dietz B, Machann J, Agrawal V, et al. Detection of diabetes from whole-body MRI using deep learning. JCI Insight. 2021;6(21).

  70. Wagner R, Heni M, Tabak AG, et al. Pathophysiology-based subphenotyping of individuals at elevated risk for type 2 diabetes. Nat Med. 2021;27(1):49–57.

    Article  CAS  PubMed  Google Scholar 

  71. Keating ST, Plutzky J, El-Osta A. Epigenetic changes in diabetes and cardiovascular risk. Circ Res. 2016;118(11):1706–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Castellano-Castillo D, Moreno-Indias I, Sanchez-Alcoholado L, et al. Altered adipose tissue DNA methylation status in metabolic syndrome: relationships between global DNA methylation and specific methylation at adipogenic, lipid metabolism and inflammatory candidate genes and metabolic variables. J Clin Med. 2019;8(1).

  73. Akbari M, Hassan-Zadeh V. The inflammatory effect of epigenetic factors and modifications in type 2 diabetes. Inflammopharmacology. 2020;28(2):345–62.

    Article  CAS  PubMed  Google Scholar 

  74. Fontanella RA, Scisciola L, Rizzo MR, et al. Adiponectin related vascular and cardiac benefits in obesity: is there a role for an epigenetically regulated mechanism? Front Cardiovasc Med. 2021;8:768026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. He Z, Zhang R, Jiang F, Hou W, Hu C. Role of genetic and environmental factors in DNA methylation of lipid metabolism. Genes Dis. 2018;5(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  76. Arner P, Kulyte A. MicroRNA regulatory networks in human adipose tissue and obesity. Nat Rev Endocrinol. 2015;11(5):276–88.

    Article  CAS  PubMed  Google Scholar 

  77. Crewe C, An YA, Scherer PE. The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J Clin Invest. 2017;127(1):74–82.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Piche ME, Tchernof A, Despres JP. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res. 2020;126(11):1477–500.

    Article  CAS  PubMed  Google Scholar 

  79. Lawler PR, Akinkuolie AO, Chu AY, et al. Atherogenic lipoprotein determinants of cardiovascular disease and residual risk among individuals with low low-density lipoprotein cholesterol. J Am Heart Assoc. 2017;6(7).

  80. Tchernof A, Despres JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93(1):359–404.

    Article  CAS  PubMed  Google Scholar 

  81. Piche ME, Tardif I, Auclair A, Poirier P. Effects of bariatric surgery on lipid-lipoprotein profile. Metabolism. 2021;115:154441.

    Article  CAS  PubMed  Google Scholar 

  82. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135–43.

    Article  CAS  PubMed  Google Scholar 

  83. Neeland IJ, Ross R, Despres JP, et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes Endocrinol. 2019;7(9):715–25.

    Article  PubMed  Google Scholar 

  84. Rana MN, Neeland IJ. Adipose tissue inflammation and cardiovascular disease: an update. Curr Diab Rep. 2022;22(1):27–37.

    Article  CAS  PubMed  Google Scholar 

  85. Powell-Wiley TM, Poirier P, Burke LE, et al. Obesity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2021;143(21):e984–1010.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mazzotta C, Basu S, Gower AC, et al. Perivascular adipose tissue inflammation in ischemic heart disease. Arterioscler Thromb Vasc Biol. 2021;41(3):1239–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Le Jemtel TH, Samson R, Milligan G, Jaiswal A, Oparil S. Visceral adipose tissue accumulation and residual cardiovascular risk. Curr Hypertens Rep. 2018;20(9):77.

    Article  PubMed  Google Scholar 

  88. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31.

    Article  CAS  PubMed  Google Scholar 

  89. McGill HC Jr, McMahan CA, Herderick EE, et al. Obesity accelerates the progression of coronary atherosclerosis in young men. Circulation. 2002;105(23):2712–8.

    Article  PubMed  Google Scholar 

  90. Lakka HM, Lakka TA, Tuomilehto J, Salonen JT. Abdominal obesity is associated with increased risk of acute coronary events in men. Eur Heart J. 2002;23(9):706–13.

    Article  PubMed  Google Scholar 

  91. Madala MC, Franklin BA, Chen AY, et al. Obesity and age of first non-ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2008;52(12):979–85.

    Article  PubMed  Google Scholar 

  92. Das SR, Alexander KP, Chen AY, et al. Impact of body weight and extreme obesity on the presentation, treatment, and in-hospital outcomes of 50,149 patients with ST-Segment elevation myocardial infarction results from the NCDR (National Cardiovascular Data Registry). J Am Coll Cardiol. 2011;58(25):2642–50.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Nordestgaard BG, Palmer TM, Benn M, et al. The effect of elevated body mass index on ischemic heart disease risk: causal estimates from a Mendelian randomisation approach. PLoS Med. 2012;9(5):e1001212.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Varbo A, Benn M, Smith GD, Timpson NJ, Tybjaerg-Hansen A, Nordestgaard BG. Remnant cholesterol, low-density lipoprotein cholesterol, and blood pressure as mediators from obesity to ischemic heart disease. Circ Res. 2015;116(4):665–73.

    Article  CAS  PubMed  Google Scholar 

  95. D’Agati VD, Chagnac A, de Vries AP, et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol. 2016;12(8):453–71.

    Article  PubMed  Google Scholar 

  96. Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat Rev Nephrol. 2019;15(6):367–85.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wang M, Wang Z, Chen Y, Dong Y. Kidney damage caused by obesity and its feasible treatment drugs. Int J Mol Sci. 2022;23(2).

  98. Garcia-Carro C, Vergara A, Bermejo S, Azancot MA, Sellares J, Soler MJ. A nephrologist perspective on obesity: from kidney injury to clinical management. Front Med (Lausanne). 2021;8:655871.

    Article  Google Scholar 

  99. Kotsis V, Martinez F, Trakatelli C, Redon J. Impact of obesity in kidney diseases. Nutrients. 2021;13(12).

  100. Wang J, Niratharakumar K, Gokhale K, et al. Obesity without metabolic abnormality and incident CKD: a population-based British cohort study. Am J Kidney Dis. 2022;79(1):24–35 e1.

    Article  CAS  PubMed  Google Scholar 

  101. Xu T, Sheng Z, Yao L. Obesity-related glomerulopathy: pathogenesis, pathologic, clinical characteristics and treatment. Front Med. 2017;11(3):340–8.

    Article  PubMed  Google Scholar 

  102. Othman M, Kawar B, El Nahas AM. Influence of obesity on progression of non-diabetic chronic kidney disease: a retrospective cohort study. Nephron Clin Pract. 2009;113(1):c16-23.

    Article  CAS  PubMed  Google Scholar 

  103. Gurusinghe S, Brown RD, Cai X, et al. Does a nephron deficit exacerbate the renal and cardiovascular effects of obesity? PLoS ONE. 2013;8(9):e73095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yu Z, Grams ME, Ndumele CE, et al. Association between midlife obesity and kidney function trajectories: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Kidney Dis. 2021;77(3):376–85.

    Article  CAS  PubMed  Google Scholar 

  105. Zitt E, Pscheidt C, Concin H, Kramar R, Lhotta K, Nagel G. Anthropometric and metabolic risk factors for ESRD are disease-specific: results from a large population-based cohort study in Austria. PLoS ONE. 2016;11(8):e0161376.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Agarwal R, Song RJ, Vasan RS, Xanthakis V. Left ventricular mass and incident chronic kidney disease. Hypertension. 2020;75(3):702–6.

    Article  CAS  PubMed  Google Scholar 

  107. Bogers RP, Bemelmans WJ, Hoogenveen RT, et al. Association of overweight with increased risk of coronary heart disease partly independent of blood pressure and cholesterol levels: a meta-analysis of 21 cohort studies including more than 300 000 persons. Arch Intern Med. 2007;167(16):1720–8.

    Article  PubMed  Google Scholar 

  108. Global Burden of Metabolic Risk Factors for Chronic Diseases C, Lu Y, Hajifathalian K, et al. Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1.8 million participants. Lancet. 2014;383(9921):970–83.

    Article  Google Scholar 

  109. Chintam K, Chang AR. Strategies to treat obesity in patients with CKD. Am J Kidney Dis. 2021;77(3):427–39.

    Article  PubMed  Google Scholar 

  110. Merlotti C, Morabito A, Ceriani V, Pontiroli AE. Prevention of type 2 diabetes in obese at-risk subjects: a systematic review and meta-analysis. Acta Diabetol. 2014;51(5):853–63.

    Article  CAS  PubMed  Google Scholar 

  111. Mauer Y, Parker M, Kashyap SR. Antiobesity drug therapy: an individualized and comprehensive approach. Cleve Clin J Med. 2021;88(8):440–8.

    Article  PubMed  Google Scholar 

  112. •• Hall ME, Cohen JB, Ard JD, et al. Weight-loss strategies for prevention and treatment of hypertension: a scientific statement from the American Heart Association. Hypertension. 2021;78(5):e38-e50. The review underlines the necessity of treating both obesity and hypertension.

  113. LeBlanc ES, Patnode CD, Webber EM, Redmond N, Rushkin M, O’Connor EA. Behavioral and pharmacotherapy weight loss interventions to prevent obesity-related morbidity and mortality in adults: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA. 2018;320(11):1172–91.

    Article  PubMed  Google Scholar 

  114. Natsis M, Antza C, Doundoulakis I, Stabouli S, Kotsis V. Hypertension in obesity: novel insights. Curr Hypertens Rev. 2020;16(1):30–6.

    PubMed  Google Scholar 

  115. Coelho C, Crane J, Agius R, McGowan B. The bariatric-metabolic physician’s role in managing clinically severe obesity. Curr Obes Rep. 2021;10(3):263–73.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Tsai AG, Bessesen DH. Obesity. Ann Intern Med. 2019;170(5):ITC33–48.

    Article  PubMed  Google Scholar 

  117. Bakker EA, Lee DC, Sui X, et al. Association of resistance exercise, independent of and combined with aerobic exercise, with the incidence of metabolic syndrome. Mayo Clin Proc. 2017;92(8):1214–22.

    Article  PubMed  Google Scholar 

  118. Thamer C, Machann J, Stefan N, et al. High visceral fat mass and high liver fat are associated with resistance to lifestyle intervention. Obesity (Silver Spring). 2007;15(2):531–8.

    Article  Google Scholar 

  119. Winters-van Eekelen E, Van der Velde JHPM, Boone SC, et al. Objectively measured physical activity and body fatness: associations with total body fat, visceral fat, and liver fat. Med Sci Sports Exerc. 2021;53(11):2309–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kolnes KJ, Petersen MH, Lien-Iversen T, Hojlund K, Jensen J. Effect of exercise training on fat loss-energetic perspectives and the role of improved adipose tissue function and body fat distribution. Front Physiol. 2021;12:737709.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ruiz JR, Lavie CJ, Ortega FB. Exercise versus pharmacological interventions for reducing visceral adiposity and improving health outcomes. Mayo Clin Proc. 2019;94(2):182–5.

    Article  PubMed  Google Scholar 

  122. Yanovski SZ, Yanovski JA. Progress in pharmacotherapy for obesity. JAMA. 2021;326(2):129–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bessesen DH, Van Gaal LF. Progress and challenges in anti-obesity pharmacotherapy. Lancet Diabetes Endocrinol. 2018;6(3):237–48.

    Article  PubMed  Google Scholar 

  124. Srivastava G, Apovian CM. Current pharmacotherapy for obesity. Nat Rev Endocrinol. 2018;14(1):12–24.

    Article  CAS  PubMed  Google Scholar 

  125. Khera R, Murad MH, Chandar AK, et al. Association of pharmacological treatments for obesity with weight loss and adverse events: a systematic review and meta-analysis. JAMA. 2016;315(22):2424–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mehta M, Istfan NW, Apovian CM. Obesity: overview of weight management. Endocr Pract. 2021;27(6):626–35.

    Article  PubMed  Google Scholar 

  127. Apovian CM, Aronne LJ, Bessesen DH, et al. Pharmacological management of obesity: an endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2015;100(2):342–62.

    Article  CAS  PubMed  Google Scholar 

  128. Neeland IJ, Marso SP, Ayers CR, et al. Effects of liraglutide on visceral and ectopic fat in adults with overweight and obesity at high cardiovascular risk: a randomised, double-blind, placebo-controlled, clinical trial. Lancet Diabetes Endocrinol. 2021;9(9):595–605.

    Article  CAS  PubMed  Google Scholar 

  129. Rubino DM, Greenway FL, Khalid U, et al. Effect of weekly subcutaneous semaglutide vs daily liraglutide on body weight in adults with overweight or obesity without diabetes: the STEP 8 randomized clinical trial. JAMA. 2022;327(2):138–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jastreboff AM, Aronne LJ, Ahmad NN, et al. Tirzepatide once weekly for the treatment of obesity. N Engl J Med. 2022.

  131. Heymsfield SB, Coleman LA, Miller R, et al. Effect of bimagrumab vs placebo on body fat mass among adults with type 2 diabetes and obesity: a phase 2 randomized clinical trial. JAMA Netw Open. 2021;4(1):e2033457.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Pareek M, Bhatt DL, Schiavon CA, Schauer PR. Metabolic surgery for hypertension in patients with obesity. Circ Res. 2019;124(7):1009–24.

    Article  CAS  PubMed  Google Scholar 

  133. Wilson R, Aminian A, Tahrani AA. Metabolic surgery: a clinical update. Diabetes Obes Metab. 2021;23(Suppl 1):63–83.

    Article  PubMed  Google Scholar 

  134. van Veldhuisen SL, Gorter TM, van Woerden G, et al. Bariatric surgery and cardiovascular disease: a systematic review and meta-analysis. Eur Heart J. 2022;43(20):1955–69.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Squadrito F, Rottura M, Irrera N, et al. Anti-obesity drug therapy in clinical practice: evidence of a poor prescriptive attitude. Biomed Pharmacother. 2020;128:110320.

    Article  CAS  PubMed  Google Scholar 

  136. Yanovski SZ, Yanovski JA. Toward precision approaches for the prevention and treatment of obesity. JAMA. 2018;319(3):223–4.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Kanj A, Levine D. Overcoming obesity: weight-loss drugs are underused. Cleve Clin J Med. 2020;87(10):602–4.

    Article  PubMed  Google Scholar 

  138. Zevin B, Martin M, Dalgarno N, et al. Survey of perceptions and educational needs of primary care providers regarding management of patients with class II and III obesity in Ontario, Canada. BMC Fam Pract. 2021;22(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Lopez EKH, Helm MC, Gould JC, Lak KL. Primary care providers’ attitudes and knowledge of bariatric surgery. Surg Endosc. 2020;34(5):2273–8.

    Article  PubMed  Google Scholar 

  140. Burke MA, Heiland FW. Evolving societal norms of obesity: what is the appropriate response? JAMA. 2018;319(3):221–2.

    Article  PubMed  Google Scholar 

  141. Bajaj SS, Stanford FC. Dignity and respect: people-first language with regard to obesity. Obes Surg. 2021;31(6):2791–2.

    Article  PubMed  Google Scholar 

  142. •• Rubino F, Puhl RM, Cummings DE, et al. Joint international consensus statement for ending stigma of obesity. Nat Med. 2020;26(4):485–97. Semaglutide results in greater weight loss than liraglutide.

  143. Middleton KR, Anton SD, Perri MG. Long-term adherence to health behavior change. Am J Lifestyle Med. 2013;7(6):395–404.

    Article  PubMed  Google Scholar 

  144. Pearl RL, Wadden TA, Walton K, Allison KC, Tronieri JS, Williams NN. Health and appearance: factors motivating the decision to seek bariatric surgery. Surg Obes Relat Dis. 2019;15(4):636–42.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Andreyeva T, Puhl RM, Brownell KD. Changes in perceived weight discrimination among Americans, 1995–1996 through 2004–2006. Obesity (Silver Spring). 2008;16(5):1129–34.

    Article  Google Scholar 

  146. •• Bluher M. Metabolically Healthy Obesity. Endocr Rev. 2020;41(3). The review underlines the transient nature of metabolically healthy obesity.

  147. Wildman RP, Muntner P, Reynolds K, et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004). Arch Intern Med. 2008;168(15):1617–24.

    Article  PubMed  Google Scholar 

  148. Reaven GM. Importance of identifying the overweight patient who will benefit the most by losing weight. Ann Intern Med. 2003;138(5):420–3.

    Article  PubMed  Google Scholar 

  149. Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112(17):2735–52.

    Article  PubMed  Google Scholar 

  150. Mathieu P, Poirier P, Pibarot P, Lemieux I, Despres JP. Visceral obesity: the link among inflammation, hypertension, and cardiovascular disease. Hypertension. 2009;53(4):577–84.

    Article  CAS  PubMed  Google Scholar 

  151. Covassin N, Sert-Kuniyoshi FH, Singh P, et al. Experimental weight gain increases ambulatory blood pressure in healthy subjects: implications of visceral fat accumulation. Mayo Clin Proc. 2018;93(5):618–26.

    Article  PubMed  Google Scholar 

  152. Neeland IJ, Boone SC, Mook-Kanamori DO, et al. Metabolomics profiling of visceral adipose tissue: results from MESA and the NEO study. J Am Heart Assoc. 2019;8(9):e010810.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Klein S, Fontana L, Young VL, et al. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med. 2004;350(25):2549–57.

    Article  CAS  PubMed  Google Scholar 

  154. Borga M, West J, Bell JD, et al. Advanced body composition assessment: from body mass index to body composition profiling. J Investig Med. 2018;66(5):1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Ross R, Neeland IJ, Yamashita S, et al. Waist circumference as a vital sign in clinical practice: a Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat Rev Endocrinol. 2020;16(3):177–89.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Amato MC, Giordano C, Galia M, et al. Visceral Adiposity Index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care. 2010;33(4):920–2.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Elisha B, Messier V, Karelis A, et al. The visceral adiposity index: relationship with cardiometabolic risk factors in obese and overweight postmenopausal women–a MONET group study. Appl Physiol Nutr Metab. 2013;38(8):892–9.

    Article  PubMed  Google Scholar 

  158. Amato MC, Giordano C. Visceral adiposity index: an indicator of adipose tissue dysfunction. Int J Endocrinol. 2014;2014:730827.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ferreira FG, Juvanhol LL, da Silva DCG, Longo GZ. Visceral adiposity index is a better predictor of unhealthy metabolic phenotype than traditional adiposity measures: results from a population-based study. Public Health Nutr. 2019;22(9):1545–54.

    Article  PubMed  Google Scholar 

  160. Bijari M, Jangjoo S, Emami N, et al. The accuracy of visceral adiposity index for the screening of metabolic syndrome: a systematic review and meta-analysis. Int J Endocrinol. 2021;2021:6684627.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Tsou MT, Chang YC, Hsu CP, et al. Visceral adiposity index outperforms conventional anthropometric assessments as predictor of diabetes mellitus in elderly Chinese: a population-based study. Nutr Metab (Lond). 2021;18(1):87.

    Article  PubMed Central  Google Scholar 

  162. Shang L, Li R, Zhao Y, Sun H, Tang B, Hou Y. Association between Chinese visceral adiposity index and incident type 2 diabetes mellitus in Japanese adults. Diabetes Metab Syndr Obes. 2021;14:3743–51.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Leite NN, Cota BC, Gotine A, Rocha D, Pereira PF, Hermsdorff HHM. Visceral adiposity index is positively associated with blood pressure: a systematic review. Obes Res Clin Pract. 2021;15(6):546–56.

    Article  PubMed  Google Scholar 

  164. Amato MC, Giordano C. Clinical indications and proper use of Visceral Adiposity Index. Nutr Metab Cardiovasc Dis. 2013;23(8):e31–2.

    Article  CAS  PubMed  Google Scholar 

  165. Amato MC, Giordano C, Pitrone M, Galluzzo A. Cut-off points of the visceral adiposity index (VAI) identifying a visceral adipose dysfunction associated with cardiometabolic risk in a Caucasian Sicilian population. Lipids Health Dis. 2011;10:183.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry H. Le Jemtel.

Ethics declarations

Conflict of Interest

Rohan Samson, Pierre Vladimir Ennezat, and Thierry H. Le Jemtel declare that they have no conflict of interest. Suzanne Oparil reports personal fees from Preventric Diagnostic, Inc., personal fees from CinCor Pharma Inc., grants from HIGI, grants from George Clinical Pty, grants from CinCor, outside the submitted work: and EIC, Current Hypertension Reports (Journal; Publisher—Springer Science Business Media LLC); annual stipend of $5,000 (Springer); Editor-in-Chief Term until 12/2022.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Hypertension and Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samson, R., Ennezat, P.V., Le Jemtel, T.H. et al. Cardiovascular Disease Risk Reduction and Body Mass Index. Curr Hypertens Rep 24, 535–546 (2022). https://doi.org/10.1007/s11906-022-01213-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-022-01213-5

Keywords

Navigation