Skip to main content

Advertisement

Log in

New Genes for Focal Epilepsies with Speech and Language Disorders

  • Genetics (V Bonifati, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

An Erratum to this article was published on 23 June 2015

Abstract

The last 2 years have seen exciting advances in the genetics of Landau-Kleffner syndrome and related disorders, encompassed within the epilepsy-aphasia spectrum (EAS). The striking finding of mutations in the N-methyl-d-aspartate (NMDA) receptor subunit gene GRIN2A as the first monogenic cause in up to 20 % of patients with EAS suggests that excitatory glutamate receptors play a key role in these disorders. Patients with GRIN2A mutations have a recognizable speech and language phenotype that may assist with diagnosis. Other molecules involved in RNA binding and cell adhesion have been implicated in EAS; copy number variations are also found. The emerging picture highlights the overlap between the genetic determinants of EAS with speech and language disorders, intellectual disability, autism spectrum disorders and more complex developmental phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Landau WM, Kleffner FR. Syndrome of acquired aphasia with convulsive disorder in children. Neurology. 1957;7:523–30.

    CAS  PubMed  Google Scholar 

  2. Tsai MH, Vears DF, Turner SJ, et al. Clinical genetic study of the epilepsy-aphasia spectrum. Epilepsia. 2013;54:280–7.

    PubMed  Google Scholar 

  3. Deonna T, Roulet-Perez E. Early-onset acquired epileptic aphasia (Landau-Kleffner syndrome, LKS) and regressive autistic disorders with epileptic EEG abnormalities: the continuing debate. Brain Dev. 2010;32:746–52.

    PubMed  Google Scholar 

  4. Rudolf G, Valenti MP, Hirsch E, Szepetowski P. From rolandic epilepsy to continuous spike-and-waves during sleep and Landau-Kleffner syndromes: insights into possible genetic factors. Epilepsia. 2009;50 Suppl 7:25–8.

    CAS  PubMed  Google Scholar 

  5. Tassinari CA, Cantalupo G, Dalla Bernardina B, et al. Encephalopathy related to status epilepticus during slow sleep (ESES) including Landau-Kleffner syndrome. In: Bureau M, Genton P, Dravet C, Delgado-Escueta A, Tassinari CA, Thomas P, et al., editors. Epileptic syndromes in infancy, childhood and adolescence. 5th ed. London: John Libbey Eurotext; 2012. p. 255–75.

    Google Scholar 

  6. Roulet Perez E, Davidoff V, Despland PA, Deonna T. Mental and behavioural deterioration of children with epilepsy and CSWS: acquired epileptic frontal syndrome. Dev Med Child Neurol. 1993;35:661–74.

    CAS  PubMed  Google Scholar 

  7. Tassinari CA, Bureau M, Dravet C, Roger J, Daniele-Natale O. Electrical status epilepticus during sleep in children (ESES). In: Sterman MB, Shouse MN, Passouant P, editors. Sleep and epilepsy. New York: Academic; 1982. p. 465–79.

    Google Scholar 

  8. Deonna TW, Roulet E, Fontan D, Marcoz JP. Speech and oromotor deficits of epileptic origin in benign partial epilepsy of childhood with rolandic spikes (BPERS). Relationship to the acquired aphasia-epilepsy syndrome. Neuropediatrics. 1993;24:83–7.

    CAS  PubMed  Google Scholar 

  9. Roulet E, Deonna T, Despland PA. Prolonged intermittent drooling and oromotor dyspraxia in benign childhood epilepsy with centrotemporal spikes. Epilepsia. 1989;30:564–8.

    CAS  PubMed  Google Scholar 

  10. Shafrir Y, Prensky AL. Acquired epileptiform opercular syndrome: a second case report, review of the literature, and comparison to the Landau-Kleffner syndrome. Epilepsia. 1995;36:1050–7.

    CAS  PubMed  Google Scholar 

  11. Guerrini R, Pellacani S. Benign childhood focal epilepsies. Epilepsia. 2012;53 Suppl 4:9–18. Comprehensive review of the BECTS literature.

    PubMed  Google Scholar 

  12. Northcott E, Connolly AM, Berroya A, et al. The neuropsychological and language profile of children with benign rolandic epilepsy. Epilepsia. 2005;46:924–30.

    PubMed  Google Scholar 

  13. Hommet C, Billard C, Motte J, et al. Cognitive function in adolescents and young adults in complete remission from benign childhood epilepsy with centro-temporal spikes. Epileptic Disord. 2001;3:207–16.

    CAS  PubMed  Google Scholar 

  14. Baglietto MG, Battaglia FM, Nobili L, et al. Neuropsychological disorders related to interictal epileptic discharges during sleep in benign epilepsy of childhood with centrotemporal or rolandic spikes. Dev Med Child Neurol. 2001;43:407–12.

    CAS  PubMed  Google Scholar 

  15. Croona C, Kihlgren M, Lundberg S, Eeg-Olofsson O, Eeg-Olofsson KE. Neuropsychological findings in children with benign childhood epilepsy with centrotemporal spikes. Dev Med Child Neurol. 1999;41:813–8.

    CAS  PubMed  Google Scholar 

  16. Weglage J, Demsky A, Pietsch M, Kurlemann G. Neuropsychological, intellectual, and behavioral findings in patients with centrotemporal spikes with and without seizures. Dev Med Child Neurol. 1997;39:646–51.

    CAS  PubMed  Google Scholar 

  17. Massa R, de Saint Martin ARC. EEG criteria predictive of complicated evolution in idiopathic rolandic epilepsy. Neurology. 2001;57:1071–9.

    CAS  PubMed  Google Scholar 

  18. Riva D, Vago C, Franceschetti S, et al. Intellectual and language findings and their relationship to EEG characteristics in benign childhood epilepsy with centrotemporal spikes. Epilepsy Behav. 2007;10:278–85.

    PubMed  Google Scholar 

  19. Monjauze C, Tuller L, Hommet C, Barthez MA, Khomsi A. Language in benign childhood epilepsy with centro-temporal spikes abbreviated form: rolandic epilepsy and language. Brain Lang. 2005;92:300–8.

    PubMed  Google Scholar 

  20. Staden U, Isaacs E, Boyd SG, Brandl U, Neville BG. Language dysfunction in children with rolandic epilepsy. Neuropediatrics. 1998;29:242–8.

    CAS  PubMed  Google Scholar 

  21. Clarke T, Strug LJ, Murphy PL, et al. High risk of reading disability and speech sound disorder in rolandic epilepsy families: case-control study. Epilepsia. 2007;48:2258–65.

    PubMed Central  PubMed  Google Scholar 

  22. Papavasiliou A, Mattheou D, Bazigou H, Kotsalis C, Paraskevoulakos E. Written language skills in children with benign childhood epilepsy with centrotemporal spikes. Epilepsy Behav. 2005;6:50–8.

    CAS  PubMed  Google Scholar 

  23. Aicardi J, Chevrie JJ. Atypical benign partial epilepsy of childhood. Dev Med Child Neurol. 1982;24:281–92.

    CAS  PubMed  Google Scholar 

  24. Doose H, Brigger-Heuer B, Neubauer B. Children with focal sharp waves: clinical and genetic aspects. Epilepsia. 1997;38:788–96.

    CAS  PubMed  Google Scholar 

  25. Scheffer IE, Jones L, Pozzebon M, Howell RA, Saling MM, Berkovic SF. Autosomal dominant rolandic epilepsy and speech dyspraxia: a new syndrome with anticipation. Ann Neurol. 1995;38:633–42.

    CAS  PubMed  Google Scholar 

  26. Roll P, Rudolf G, Pereira S, et al. SRPX2 mutations in disorders of language cortex and cognition. Hum Mol Genet. 2006;15:1195–207.

    CAS  PubMed  Google Scholar 

  27. Kugler SL, Bali B, Lieberman P, et al. An autosomal dominant genetically heterogeneous variant of rolandic epilepsy and speech disorder. Epilepsia. 2008;49:1086–90.

    PubMed Central  PubMed  Google Scholar 

  28. Michelucci R, Scudellaro E, Testoni S, et al. Familial epilepsy and developmental dysphasia: description of an Italian pedigree with autosomal dominant inheritance and screening of candidate loci. Epilepsy Res. 2008;80:9–17.

    PubMed  Google Scholar 

  29. Robinson RO, Baird G, Robinson G, Simonoff E. Landau-Kleffner syndrome: course and correlates with outcome. Dev Med Child Neurol. 2001;43:243–7.

    CAS  PubMed  Google Scholar 

  30. Lanzi G, Veggiotti P, Conte S, Partesana E, Resi C. A correlated fluctuation of language and EEG abnormalities in a case of the Landau-Kleffner syndrome. Brain Dev. 1994;16:329–34.

    CAS  PubMed  Google Scholar 

  31. Cole AJ, Andermann F, Taylor L, et al. The Landau-Kleffner syndrome of acquired epileptic aphasia: unusual clinical outcome, surgical experience, and absence of encephalitis. Neurology. 1988;38:31–8.

  32. Rossi PG, Parmeggiani A, Posar A, Scaduto MC, Chiodo S, Vatti G. Landau-Kleffner syndrome (LKS): long-term follow-up and links with electrical status epilepticus during sleep (ESES). Brain Dev. 1999;21:90–8.

    CAS  PubMed  Google Scholar 

  33. Soprano AM, Garcia EF, Caraballo R, Fejerman N. Acquired epileptic aphasia: neuropsychologic follow-up of 12 patients. Pediatr Neurol. 1994;11:230–5.

    CAS  PubMed  Google Scholar 

  34. Nevsimalova S, Tauberova A, Doutlik S, Kucera V, Dlouha O. A role of autoimmunity in the etiopathogenesis of Landau-Kleffner syndrome? Brain Dev. 1992;14:342–5.

    CAS  PubMed  Google Scholar 

  35. Connolly AM, Chez MG, Pestronk A, Arnold ST, Mehta S, Deuel RK. Serum autoantibodies to brain in Landau-Kleffner variant, autism, and other neurologic disorders. J Pediatr. 1999;134:607–13.

    CAS  PubMed  Google Scholar 

  36. Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 1989;30:389–399.

  37. Vadlamudi L, Harvey AS, Connellan MM, et al. Is benign rolandic epilepsy genetically determined? Ann Neurol. 2004;56:129–32.

    PubMed  Google Scholar 

  38. Vadlamudi L, Kjeldsen MJ, Corey LA, et al. Analyzing the etiology of benign rolandic epilepsy: a multicenter twin collaboration. Epilepsia. 2006;47:550–5.

    PubMed  Google Scholar 

  39. Feekery CJ, Parry-Fielder B, Hopkins IJ. Landau-Kleffner syndrome: six patients including discordant monozygotic twins. Pediatr Neurol. 1993;9:49–53.

    CAS  PubMed  Google Scholar 

  40. Vears DF, Tsai MH, Sadleir LG, et al. Clinical genetic studies in benign childhood epilepsy with centrotemporal spikes. Epilepsia. 2012;53:319–24.

    PubMed  Google Scholar 

  41. Lesca G, Rudolf G, Labalme A, et al. Epileptic encephalopathies of the Landau-Kleffner and continuous spike and waves during slow-wave sleep types: genomic dissection makes the link with autism. Epilepsia. 2012;53:1526–38. This paper identifies copy number variants in LKS and ECSWS, many which highlight genomic regions or genes associated with ASD or speech and language disorders.

    CAS  PubMed  Google Scholar 

  42. De Tiege X, Goldman S, Verheulpen D, Aeby A, Poznanski N, Van Bogaert P. Coexistence of idiopathic rolandic epilepsy and CSWS in two families. Epilepsia. 2006;47:1723–7.

    PubMed  Google Scholar 

  43. Lesca G, Rudolf G, Bruneau N, et al. GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction. Nat Genet. 2013;45:1061–6. One of the three seminal papers published together (Carvill et al. 2013; Lesca et al. 2013; Lemke et al. 2013) identifying GRIN2A as the first monogenic cause of EAS disorders. Until this discovery, the pathophysiological basis of these disorders was unknown and controversial. They showed that 20 % of unrelated probands with EAS had GRIN2A mutations.

    CAS  PubMed  Google Scholar 

  44. Lemke JR, Lal D, Reinthaler EM. Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat Genet. 2013;45:1067–72. One of the three seminal papers published together (Carvill et al. 2013; Lesca et al. 2013; Lemke et al. 2013) identifying GRIN2A as the first monogenic cause of EAS disorders. Until this discovery, the pathophysiological basis of these disorders was unknown and controversial.

    CAS  PubMed  Google Scholar 

  45. Carvill GL, Regan BM, Yendle SC, et al. GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat Genet. 2013;45:1073–6. One of the three seminal papers published together (Carvill et al. 2013; Lesca et al. 2013; Lemke et al. 2013) identifying GRIN2A as the first monogenic cause of EAS disorders. Until this discovery, the pathophysiological basis of these disorders was unknown and controversial. This paper showed that 9 % of EAS probands had GRIN2A mutations.

    CAS  PubMed  Google Scholar 

  46. Reutlinger C, Helbig I, Gawelczyk B, et al. Deletions in 16p13 including GRIN2A in patients with intellectual disability, various dysmorphic features, and seizure disorders of the rolandic region. Epilepsia. 2010;51:1870–3.

    CAS  PubMed  Google Scholar 

  47. Conroy J, McGettigan PA, McCreary D, et al. Towards the identification of a genetic basis for Landau-Kleffner syndrome. Epilepsia. 2014;55:858–65.

    CAS  PubMed  Google Scholar 

  48. Miyamoto H, Katagiri H, Hensch T. Experience-dependent slow-wave sleep development. Nat Neurosci. 2003;6:553–4.

    CAS  PubMed  Google Scholar 

  49. Kornau HC, Schenker LT, Kennedy MB, Seeburg PH. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science. 1995;269:1737–40.

    CAS  PubMed  Google Scholar 

  50. Laube B, Hirai H, Sturgess M, Betz H, Kuhse J. Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron. 1997;18:493–503.

    CAS  PubMed  Google Scholar 

  51. Monyer H, Sprengel R, Schoepfer R, et al. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science. 1992;256:1217–21.

    CAS  PubMed  Google Scholar 

  52. Sprengel R, Suchanek B, Amico C, et al. Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell. 1998;92:279–89.

    CAS  PubMed  Google Scholar 

  53. Endele S, Rosenberger G, Geider K, et al. Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet. 2010;42:1021–6.

    CAS  PubMed  Google Scholar 

  54. Akbarian S, Sucher NJ, Bradley D, et al. Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. J Neurosci. 1996;16:19–30.

    CAS  PubMed  Google Scholar 

  55. Kosinski CM, Standaert DG, Counihan TJ, et al. Expression of N-methyl-D-aspartate receptor subunit mRNAs in the human brain: striatum and globus pallidus. J Comp Neurol. 1998;390:63–74.

    CAS  PubMed  Google Scholar 

  56. Scherzer CR, Landwehrmeyer GB, Kerner JA, et al. Expression of N-methyl-D-aspartate receptor subunit mRNAs in the human brain: hippocampus and cortex. J Comp Neurol. 1998;390:75–90.

    CAS  PubMed  Google Scholar 

  57. Conti F, Barbaresi P, Melone M, Ducati A. Neuronal and glial localization of NR1 and NR2A/B subunits of the NMDA receptor in the human cerebral cortex. Cereb Cortex. 1999;9:110–20.

    CAS  PubMed  Google Scholar 

  58. Bi H, Sze CI. N-methyl-D-aspartate receptor subunit NR2A and NR2B messenger RNA levels are altered in the hippocampus and entorhinal cortex in Alzheimer’s disease. J Neurol Sci. 2002;200:11–8.

    CAS  PubMed  Google Scholar 

  59. Hynd MR, Scott HL, Dodd PR. Differential expression of N-methyl-D-aspartate receptor NR2 isoforms in Alzheimer’s disease. J Neurochem. 2004;90:913–9.

    CAS  PubMed  Google Scholar 

  60. Clinton SM, Meador-Woodruff JH. Abnormalities of the NMDA receptor and associated intracellular molecules in the thalamus in schizophrenia and bipolar disorder. Neuropsychopharmacology. 2004;29:1353–62.

    CAS  PubMed  Google Scholar 

  61. Liegeois FJ, Morgan AT. Neural bases of childhood speech disorders: lateralization and plasticity for speech functions during development. Neurosci Biobehav Rev. 2012;36:439–58. Systematic review examining the evidence linking motor speech disorders (apraxia of speech and dysarthria) and brain abnormalities in children and adolescents with developmental, progressive or childhood-acquired conditions.

    PubMed  Google Scholar 

  62. Belton E, Salmond CH, Watkins KE, Vargha-Khadem F, Gadian DG. Bilateral brain abnormalities associated with dominantly inherited verbal and orofacial dyspraxia. Hum Brain Mapp. 2003;18:194–200.

    PubMed  Google Scholar 

  63. Liegeois F, Baldeweg T, Connelly A, Gadian DG, Mishkin M, Vargha-Khadem F. Language fMRI abnormalities associated with FOXP2 gene mutation. Nat Neurosci. 2003;6:1230–7.

    CAS  PubMed  Google Scholar 

  64. Turner SJ, Mayes AK, Verhoeven A, Mandelstam SA, Morgan AT, Scheffer IE. GRIN2A: an aptly named gene for speech dysfunction. Neurology. 2015;84:586–93. Study delineating the distinctive speech phenotype associated with GRIN2A mutations, a finding that will readily aid in diagnosis.

    CAS  PubMed  Google Scholar 

  65. Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature. 2001;413:519–23.

    CAS  PubMed  Google Scholar 

  66. Spiteri E, Konopka G, Coppola G, et al. Identification of the transcriptional targets of FOXP2, a gene linked to speech and language, in developing human brain. Am J Hum Genet. 2007;81:1144–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Vernes SC, Spiteri E, Nicod J, et al. High-throughput analysis of promoter occupancy reveals direct neural targets of FOXP2, a gene mutated in speech and language disorders. Am J Hum Genet. 2007;81:1232–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Morgan AT, Liegeois F, Vargha-Khadem F. Motor speech outcome as a function of the site of brain pathology: a developmental perspective. In: Maassen B, van Lieshout P, editors. Speech motor control: new developments in basic and applied research. Oxford: Oxford University Press; 2010. p. 95–115.

    Google Scholar 

  69. Turner SJ, Hildebrand MS, Block S, et al. Small intragenic deletion in FOXP2 associated with childhood apraxia of speech and dysarthria. Am J Med Genet A. 2013;161A:2321–6.

    PubMed  Google Scholar 

  70. Hurst JA, Baraitser M, Auger E, Graham F, Norell S. An extended family with a dominantly inherited speech disorder. Dev Med Child Neurol. 1990;32:352–5.

    CAS  PubMed  Google Scholar 

  71. Feuk L, Kalervo A, Lipsanen-Nyman M, et al. Absence of a paternally inherited FOXP2 gene in developmental verbal dyspraxia. Am J Hum Genet. 2006;79:965–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Zeesman S, Nowaczyk MJ, Teshima I, et al. Speech and language impairment and oromotor dyspraxia due to deletion of 7q31 that involves FOXP2. Am J Med Genet A. 2006;140:509–14.

    PubMed  Google Scholar 

  73. Shriberg LD, Ballard KJ, Tomblin JB, Duffy JR, Odell KH, Williams CA. Speech, prosody, and voice characteristics of a mother and daughter with a 7;13 translocation affecting FOXP2. J Speech Lang Hear Res. 2006;49:500–25.

    PubMed  Google Scholar 

  74. Rice GM, Raca G, Jakielski KJ, et al. Phenotype of FOXP2 haploinsufficiency in a mother and son. Am J Med Genet A. 2012;158A:174–81.

    PubMed Central  PubMed  Google Scholar 

  75. Watkins KE, Dronkers NF, Vargha-Khadem F. Behavioural analysis of an inherited speech and language disorder: comparison with acquired aphasia. Brain. 2002;125:452–64.

    CAS  PubMed  Google Scholar 

  76. Vargha-Khadem F, Watkins KE, Price CJ, et al. Neural basis of an inherited speech and language disorder. Proc Natl Acad Sci U S A. 1998;95:12695–700.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Lal D, Reinthaler EM, Altmuller J, et al. RBFOX1 and RBFOX3 mutations in rolandic epilepsy. PLoS One. 2013;8:e73323. Identifies deletions and truncating mutations of RBFOX1 and RBFOX3 in some individuals with rolandic epilepsy in complex pedigrees.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Lal D, Trucks H, Moller RS, et al. Rare exonic deletions of the RBFOX1 gene increase risk of idiopathic generalized epilepsy. Epilepsia. 2013;54:265–71.

    CAS  PubMed  Google Scholar 

  79. Zhao WW. Intragenic deletion of RBFOX1 associated with neurodevelopmental/neuropsychiatric disorders and possibly other clinical presentations. Mol Cytogenet. 2013;6:26.

    PubMed Central  PubMed  Google Scholar 

  80. Elia J, Glessner JT, Wang K, et al. Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder. Nat Genet. 2012;44:78–84.

    CAS  PubMed Central  Google Scholar 

  81. Davis LK, Maltman N, Mosconi MW, et al. Rare inherited A2BP1 deletion in a proband with autism and developmental hemiparesis. Am J Med Genet A. 2012;158A:1654–61.

    CAS  PubMed  Google Scholar 

  82. Martin CL, Duvall JA, Ilkin Y, et al. Cytogenetic and molecular characterization of A2BP1/FOX1 as a candidate gene for autism. Am J Med Genet B Neuropsychiatr Genet. 2007;144B:869–76.

    CAS  PubMed  Google Scholar 

  83. Bhalla K, Phillips HA, Crawford J, et al. The de novo chromosome 16 translocations of two patients with abnormal phenotypes (mental retardation and epilepsy) disrupt the A2BP1 gene. J Hum Genet. 2004;49:308–11.

    PubMed  Google Scholar 

  84. Fogel BL, Wexler E, Wahnich A, et al. RBFOX1 regulates both splicing and transcriptional networks in human neuronal development. Hum Mol Genet. 2012;21:4171–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Gehman LT, Stoilov P, Maguire J, et al. The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain. Nat Genet. 2011;43:706–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Dredge BK, Jensen KB. NeuN/Rbfox3 nuclear and cytoplasmic isoforms differentially regulate alternative splicing and nonsense-mediated decay of Rbfox2. PLoS One. 2011;6:e21585.

    PubMed Central  PubMed  Google Scholar 

  87. Ayub Q, Yngvadottir B, Chen Y, et al. FOXP2 targets show evidence of positive selection in European populations. Am J Hum Genet. 2013;92:696–706.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Sebat J, Lakshmi B, Troge J, et al. Large-scale copy number polymorphism in the human genome. Science. 2004;305:525–8.

    CAS  PubMed  Google Scholar 

  89. Mefford HC, Muhle H, Ostertag P, et al. Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet. 2010;6:e1000962.

    PubMed Central  PubMed  Google Scholar 

  90. Mefford HC, Yendle SC, Hsu C, et al. Rare copy number variants are an important cause of epileptic encephalopathies. Ann Neurol. 2011;70:974–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Kevelam SH, Jansen FE, Binsbergen E, et al. Copy number variations in patients with electrical status epilepticus in sleep. J Child Neurol. 2012;27:178–82.

    PubMed  Google Scholar 

  92. Dimassi S, Labalme A, Lesca G, et al. A subset of genomic alterations detected in rolandic epilepsies contains candidate or known epilepsy genes including GRIN2A and PRRT2. Epilepsia. 2014;55:370–8. This paper identifies 30 rare microduplication and microdeletions in patients with rolandic epilepsy.

    CAS  PubMed  Google Scholar 

  93. Reinthaler EM, Lal D, Lebon S, et al. 16p11.2 600 kb duplications confer risk for typical and atypical rolandic epilepsy. Hum Mol Genet. 2014;23:6069–80. This recent study demonstrates that duplications of 16p11.2 represent a significant genetic risk factor for typical and atypical rolandic epilepsy.

    PubMed  Google Scholar 

  94. Rodenas-Cuadrado P, Ho J, Vernes SC. Shining a light on CNTNAP2: complex functions to complex disorders. Eur J Hum Genet. 2014;22:171–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Strauss KA, Puffenberger EG, Huentelman MJ, et al. Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N Engl J Med. 2006;354:1370–7.

    CAS  PubMed  Google Scholar 

  96. Consortium SLI. Highly significant linkage to the SLI1 locus in an expanded sample of individuals affected by specific language impairment. Am J Hum Genet. 2004;74:1225–38.

    Google Scholar 

  97. Kwasnicka-Crawford DA, Carson AR, Roberts W, et al. Characterization of a novel cation transporter ATPase gene (ATP13A4) interrupted by 3q25-q29 inversion in an individual with language delay. Genomics. 2005;86:182–94.

    CAS  PubMed  Google Scholar 

  98. Sharp AJ, Mefford HC, Li K, et al. A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures. Nat Genet. 2008;40:322–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Ballif BC, Hornor SA, Jenkins E, et al. Discovery of a previously unrecognized microdeletion syndrome of 16p11.2-p12.2. Nat Genet. 2007;39:1071–3.

    CAS  PubMed  Google Scholar 

  100. Malhotra D, Sebat J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell. 2012;148:1223–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Laffin JJ, Raca G, Jackson CA, Strand EA, Jakielski KJ, Shriberg LD. Novel candidate genes and regions for childhood apraxia of speech identified by array comparative genomic hybridization. Genet Med. 2012;14:928–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Raca G, Baas BS, Kirmani S, et al. Childhood apraxia of speech (CAS) in two patients with 16p11.2 microdeletion syndrome. Eur J Hum Genet. 2013;21:455–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Newbury DF, Mari F, Sadighi Akha E, et al. Dual copy number variants involving 16p11 and 6q22 in a case of childhood apraxia of speech and pervasive developmental disorder. Eur J Hum Genet. 2013;21:361–5.

    PubMed Central  PubMed  Google Scholar 

  104. Neubauer BA, Fiedler B, Himmelein B, et al. Centrotemporal spikes in families with rolandic epilepsy: linkage to chromosome 15q14. Neurology. 1998;51:1608–12.

    CAS  PubMed  Google Scholar 

  105. Hoppman-Chaney N, Wain K, Seger PR, Superneau DW, Hodge JC. Identification of single gene deletions at 15q13.3: further evidence that CHRNA7 causes the 15q13.3 microdeletion syndrome phenotype. Clin Genet. 2013;83:345–51.

    CAS  PubMed  Google Scholar 

  106. Pierson TM, Yuan H, Marsh ED, et al. GRIN2A mutation and early-onset epileptic encephalopathy: personalized therapy with memantine. Ann Clin Transl Neurol. 2014;1:190–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Dodd B. Differential diagnosis and treatment of children with speech disorder. 2nd ed. London: Whurr; 2005.

    Google Scholar 

  108. Broomfield J, Dodd B. Children with speech and language disability: caseload characteristics. Int J Lang Commun Disord. 2004;39:303–24.

    PubMed  Google Scholar 

  109. ASHA. Childhood apraxia of speech [technical report]. www.asha.org/policy/tr2007-00278.htm#sec1.1.

  110. Darley FL, Aronson AE, Brown JR. Clusters of deviant speech dimensions in the dysarthrias. J Speech Hear Res. 1969;12:462–96.

    CAS  PubMed  Google Scholar 

  111. Darley FL, Aronson AE, Brown JR. Differential diagnostic patterns of dysarthria. J Speech Hear Res. 1969;12:246–69.

    CAS  PubMed  Google Scholar 

  112. Onslow M. Behavioural management of stuttering. 1st ed. Sydney: Livingston; 1993.

    Google Scholar 

  113. ASHA. Definitions of communication disorders and variations [relevant paper]. 1993.

  114. Bishop DV. Ten questions about terminology for children with unexplained language problems. Int J Lang Commun Disord. 2014;49:381–415.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Reilly S, Tomblin B, Law J, et al. Specific language impairment: a convenient label for whom? Int J Lang Commun Disord. 2014;49:416–51.

    PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Eliane Roulet Perez declares that she has no conflict of interest.

Samantha J. Turner has received grants from the National Health and Medical Research Council (postgraduate scholarship) and the Speech Pathology Australia (Nadia Verrall Memorial Research Grant).

Angela T. Morgan has received grants from the National Health and Medical Research Council (Career Development Award) and the Australian Research Council (Discovery Project).

Ingrid E. Scheffer has received grants from the NHMRC (CI, Program Grant 2011–2015), the NIH (PI, Centres without Walls funding “Epi4K” 2011–2015) and the ARC (Discovery Grant 2012–2014).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid E. Scheffer.

Additional information

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turner, S.J., Morgan, A.T., Perez, E.R. et al. New Genes for Focal Epilepsies with Speech and Language Disorders. Curr Neurol Neurosci Rep 15, 35 (2015). https://doi.org/10.1007/s11910-015-0554-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-015-0554-0

Keywords

Navigation