Skip to main content

Advertisement

Log in

Imaging After Thrombolysis and Thrombectomy: Rationale, Modalities and Management Implications

  • Stroke (H.C. Diener, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Urgent reperfusion treatment with intravenous thrombolysis or mechanical thrombectomy reduces disability after ischaemic stroke. Imaging plays an important role in identifying patients who benefit, particularly in extended time windows. However, the role of post-treatment neuroimaging is less well established. We review recent advances in neuroimaging after reperfusion treatment and provide a practical guide to the options and management implications.

Recent Findings

Post-treatment imaging is critical to identify patients with reperfusion-related haemorrhage and oedema requiring intervention. It also can guide the timing and intensity of antithrombotic medication. The degree of reperfusion on post-thrombectomy angiography and infarct volume and topography using CT or MRI carry important prognostic significance. Perfusion-weighted MRI and permeability analysis may help detect persistent perfusion abnormalities post-treatment and predict haemorrhagic complications.

Summary

Post-treatment neuroimaging provides clinically relevant information to identify complications, assess prognosis and perform quality assurance after acute ischaemic stroke. Recent advances in neuroimaging represent a potential avenue to explore post-reperfusion pathophysiology and uncover therapeutic targets for secondary ischaemic and haemorrhagic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Emberson J, Lees KR, Lyden P, Blackwell L, Albers G, Bluhmki E, et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet. 2014;384(9958):1929–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387(10029):1723–31.

    Article  PubMed  Google Scholar 

  3. Campbell BCV, Majoie C, Albers GW, Menon BK, Yassi N, Sharma G, et al. Penumbral imaging and functional outcome in patients with anterior circulation ischaemic stroke treated with endovascular thrombectomy versus medical therapy: a meta-analysis of individual patient-level data. Lancet Neurol. 2019;18(1):46–55.

    Article  PubMed  Google Scholar 

  4. Thomalla G, Simonsen CZ, Boutitie F, Andersen G, Berthezene Y, Cheng B, et al. MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med. 2018;379(7):611–22.

    Article  PubMed  Google Scholar 

  5. Ma H, Campbell BCV, Parsons MW, Churilov L, Levi CR, Hsu C, et al. Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N Engl J Med. 2019;380(19):1795–803.

    Article  PubMed  Google Scholar 

  6. Campbell BCV, Ma H, Ringleb PA, Parsons MW, Churilov L, Bendszus M, et al. Extending thrombolysis to 4.5-9 hours and wake-up stroke using perfusion imaging: a meta-analysis of individual patient data from EXTEND, ECASS4-EXTEND and EPITHET. Lancet. 2019. https://doi.org/10.1016/S0140-6736(19)31053-0.

    Article  Google Scholar 

  7. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2018;378(1):11–21.

    Article  PubMed  Google Scholar 

  8. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378(8):708–18.

    Article  PubMed  PubMed Central  Google Scholar 

  9. George AJ, Boehme AK, Dunn CR, Beasley T, Siegler JE, Albright KC, et al. Trimming the fat in acute ischemic stroke: an assessment of 24-h CT scans in tPA patients. Int J Stroke. 2015;10(1):37–41.

    Article  PubMed  Google Scholar 

  10. Guhwe M, Utley-Smith Q, Blessing R, Goldstein LB. Routine 24-hour computed tomography brain scan is not useful in stable patients post intravenous tissue plasminogen activator. J Stroke Cerebrovasc Dis. 2016;25(3):540–2.

    Article  PubMed  Google Scholar 

  11. Campbell BC, Parsons MW. Repeat brain imaging after thrombolysis is important. Int J Stroke. 2015;10(2):E18.

    Article  PubMed  Google Scholar 

  12. Zaidat OO, Lazzaro MA, Liebeskind DS, Janjua N, Wechsler L, Nogueira RG, et al. Revascularization grading in endovascular acute ischemic stroke therapy. Neurology. 2012;79(13 Suppl 1):S110–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Khatri P, Neff J, Broderick JP, Khoury JC, Carrozzella J, Tomsick T, et al. Revascularization end points in stroke interventional trials: recanalization versus reperfusion in IMS-I. Stroke. 2005;36(11):2400–3.

    Article  PubMed  CAS  Google Scholar 

  14. Qureshi AI, Siddiqui AM, Kim SH, Hanel RA, Xavier AR, Kirmani JF, et al. Reocclusion of recanalized arteries during intra-arterial thrombolysis for acute ischemic stroke. AJNR Am J Neuroradiol. 2004;25(2):322–8.

    PubMed  PubMed Central  Google Scholar 

  15. Higashida RT, Furlan AJ, Roberts H, Tomsick T, Connors B, Barr J, et al. Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke. Stroke. 2003;34(8):e109–37.

    Article  PubMed  Google Scholar 

  16. Manning NW, Chapot R, Meyers PM. Endovascular stroke management: key elements of success. Cerebrovasc Dis. 2016;42(3–4):170–7.

    Article  PubMed  Google Scholar 

  17. Yoo AJ, Simonsen CZ, Prabhakaran S, Chaudhry ZA, Issa MA, Fugate JE, et al. Refining angiographic biomarkers of revascularization: improving outcome prediction after intra-arterial therapy. Stroke. 2013;44(9):2509–12.

    Article  PubMed  PubMed Central  Google Scholar 

  18. •• Liebeskind DS, Bracard S, Guillemin F, Jahan R, Jovin TG, Majoie CB, et al. eTICI reperfusion: defining success in endovascular stroke therapy. J Neurointerv Surg. 2019;11(5):433–8 Analysis of eTICI outcomes.

    Article  PubMed  Google Scholar 

  19. • Balami JS, White PM, McMeekin PJ, Ford GA, Buchan AM. Complications of endovascular treatment for acute ischemic stroke: Prevention and management. Int J Stroke. 2018;13(4):348–61 Summary of thrombectomy complications.

    Article  PubMed  Google Scholar 

  20. Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372(1):11–20.

    Article  PubMed  CAS  Google Scholar 

  21. Chueh JY, Puri AS, Wakhloo AK, Gounis MJ. Risk of distal embolization with stent retriever thrombectomy and ADAPT. J Neurointerv Surg. 2016;8(2):197–202.

    Article  PubMed  Google Scholar 

  22. Darkhabani Z, Nguyen T, Lazzaro MA, Zaidat OO, Lynch JR, Fitzsimmons BF, et al. Complications of endovascular therapy for acute ischemic stroke and proposed management approach. Neurology. 2012;79(13 Suppl 1):S192–8.

    Article  PubMed  CAS  Google Scholar 

  23. Mokin M, Fargen KM, Primiani CT, Ren Z, Dumont TM, Brasiliense LBC, et al. Vessel perforation during stent retriever thrombectomy for acute ischemic stroke: technical details and clinical outcomes. J Neurointerv Surg. 2017;9(10):922–8.

    Article  PubMed  Google Scholar 

  24. Haussen DC, Ferreira IM, Barreira C, Grossberg JA, Diana F, Peschillo S, et al. Active reperfusion hemorrhage during thrombectomy: angiographic findings and real-time correlation with the CT “spot sign”. Interv Neurol. 2018;7(6):370–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Engelhorn T, Struffert T, Richter G, Doelken M, Ganslandt O, Kalender W, et al. Flat panel detector angiographic CT in the management of aneurysmal rupture during coil embolization. AJNR Am J Neuroradiol. 2008;29(8):1581–4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Gupta R. Arterial vasospasm during mechanical thrombectomy for acute stroke. J Neuroimaging. 2009;19(1):61–4.

    Article  PubMed  Google Scholar 

  27. Nishino W, Tajima Y, Inoue T, Hayasaka M, Katsu B, Ebihara K, et al. Severe vasospasm of the middle cerebral artery after mechanical thrombectomy due to infective endocarditis: an autopsy case. J Stroke Cerebrovasc Dis. 2017;26(9):e186–e8.

    Article  PubMed  Google Scholar 

  28. Akins PT, Amar AP, Pakbaz RS, Fields JD, Investigators S. Complications of endovascular treatment for acute stroke in the SWIFT trial with solitaire and Merci devices. AJNR Am J Neuroradiol. 2014;35(3):524–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Ohta H, Nakano S, Yokogami K, Iseda T, Yoneyama T, Wakisaka S. Appearance of early venous filling during intra-arterial reperfusion therapy for acute middle cerebral artery occlusion: a predictive sign for hemorrhagic complications. Stroke. 2004;35(4):893–8.

    Article  PubMed  Google Scholar 

  30. Cartmell SCD, Ball RL, Kaimal R, Telischak NA, Marks MP, Do HM, et al. Early cerebral vein after endovascular ischemic stroke treatment predicts symptomatic reperfusion hemorrhage. Stroke. 2018;49(7):1741–6.

    Article  PubMed  Google Scholar 

  31. Salehi Omran S, Boddu SR, Gusdon AM, Kummer B, Baradaran H, Patel P, et al. Angiographic blush after mechanical thrombectomy is associated with hemorrhagic transformation of ischemic stroke. J Stroke Cerebrovasc Dis. 2018;27(11):3124–30.

    Article  PubMed  Google Scholar 

  32. • Seet RC, Rabinstein AA. Symptomatic intracranial hemorrhage following intravenous thrombolysis for acute ischemic stroke: a critical review of case definitions. Cerebrovasc Dis. 2012;34(2):106–14 Review of classification criteria of intracranial hemorrhage after reperfusion treatment.

    Article  PubMed  Google Scholar 

  33. • Khatri R, McKinney AM, Swenson B, Janardhan V. Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology. 2012;79(13 Suppl 1):S52–7 Summary of blood-brain barrier disruption.

    Article  PubMed  Google Scholar 

  34. Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, et al. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol. 2018:163–164:144–71.

  35. Hacke W, Kaste M, Fieschi C, Toni D, Lesaffre E, von Kummer R, et al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA. 1995;274(13):1017–25.

    Article  PubMed  CAS  Google Scholar 

  36. Fiorelli M, Bastianello S, von Kummer R, del Zoppo GJ, Larrue V, Lesaffre E, et al. Hemorrhagic transformation within 36 hours of a cerebral infarct: relationships with early clinical deterioration and 3-month outcome in the European Cooperative Acute Stroke Study I (ECASS I) cohort. Stroke. 1999;30(11):2280–4.

    Article  PubMed  CAS  Google Scholar 

  37. •• von Kummer R, Broderick JP, Campbell BC, Demchuk A, Goyal M, Hill MD, et al. The Heidelberg Bleeding Classification: classification of bleeding events after ischemic stroke and reperfusion therapy. Stroke. 2015;46(10):2981–6 Recent revised classification of post-thrombectomy intracranial hemorrhage.

    Article  Google Scholar 

  38. The NINDS t-PA Stroke Study Group. Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. Stroke. 1997;28(11):2109–18.

  39. • Phan CM, Yoo AJ, Hirsch JA, Nogueira RG, Gupta R. Differentiation of hemorrhage from iodinated contrast in different intracranial compartments using dual-energy head CT. AJNR Am J Neuroradiol. 2012;33(6):1088–94 First description of dual-energy head CT.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Yedavalli V, Sammet S. Contrast extravasation versus hemorrhage after thrombectomy in patients with acute stroke. J Neuroimaging. 2017;27(6):570–6.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nikoubashman O, Jablawi F, Dekeyzer S, Oros-Peusquens AM, Abbas Z, Lindemeyer J, et al. MRI appearance of intracerebral iodinated contrast agents: is it possible to distinguish extravasated contrast agent from hemorrhage? AJNR Am J Neuroradiol. 2016;37(8):1418–21.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Morales H, Lemen L, Samaratunga R, Nguyen P, Tomsick T. Effects of iodinated contrast on various magnetic resonance imaging sequences and field strength: implications for characterization of hemorrhagic transformation in acute stroke therapy. World J Radiol. 2016;8(6):588–93.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bang JS, Oh CW, Jung C, Park SQ, Hwang KJ, Kang HS, et al. Intracranial stent placement for recanalization of acute cerebrovascular occlusion in 32 patients. AJNR Am J Neuroradiol. 2010;31(7):1222–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Brogan ME, Manno EM. Treatment of malignant brain edema and increased intracranial pressure after stroke. Curr Treat Options Neurol. 2015;17(1):327.

    Article  PubMed  Google Scholar 

  45. • Thoren M, Azevedo E, Dawson J, Egido JA, Falcou A, Ford GA, et al. Predictors for cerebral edema in acute ischemic stroke treated with intravenous thrombolysis. Stroke. 2017;48(9):2464–71 Analysis of edema following thrombolysis.

    Article  PubMed  Google Scholar 

  46. Dong MX, Hu QC, Shen P, Pan JX, Wei YD, Liu YY, et al. Recombinant tissue plasminogen activator induces neurological side effects independent on thrombolysis in mechanical animal models of focal cerebral infarction: a systematic review and meta-analysis. PLoS One. 2016;11(7):e0158848.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. • Irvine HJ, Ostwaldt AC, Bevers MB, Dixon S, Battey TW, Campbell BC, et al. Reperfusion after ischemic stroke is associated with reduced brain edema. J Cereb Blood Flow Metab. 2018;38(10):1807–17 Analyasis of edema following thrombectomy.

    Article  PubMed  Google Scholar 

  48. Cheripelli BK, Huang X, MacIsaac R, Muir KW. Interaction of recanalization, intracerebral hemorrhage, and cerebral edema after intravenous thrombolysis. Stroke. 2016;47(7):1761–7.

    Article  PubMed  Google Scholar 

  49. •• Kimberly WT, Dutra BG, Boers AMM, Alves H, Berkhemer OA, van den Berg L, et al. Association of reperfusion with brain edema in patients with acute ischemic stroke: a secondary analysis of the MR CLEAN Trial. JAMA Neurol. 2018;75(4):453–61 Recent post-hoc analysis of prospective thrombectomy trial MR CLEAN on relationship between thrombectomy and edema.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kasner SE, Demchuk AM, Berrouschot J, Schmutzhard E, Harms L, Verro P, et al. Predictors of fatal brain edema in massive hemispheric ischemic stroke. Stroke. 2001;32(9):2117–23.

    Article  PubMed  CAS  Google Scholar 

  51. • Wijdicks EF, Sheth KN, Carter BS, Greer DM, Kasner SE, Kimberly WT, et al. Recommendations for the management of cerebral and cerebellar infarction with swelling: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45(4):1222–38 National guidelines on cerebellar infarction surgical options.

    Article  PubMed  Google Scholar 

  52. Mlynash M, Lansberg MG, De Silva DA, Lee J, Christensen S, Straka M, et al. Refining the definition of the malignant profile: insights from the DEFUSE-EPITHET pooled data set. Stroke. 2011;42(5):1270–5.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Oppenheim C, Samson Y, Manai R, Lalam T, Vandamme X, Crozier S, et al. Prediction of malignant middle cerebral artery infarction by diffusion-weighted imaging. Stroke. 2000;31(9):2175–81.

    Article  PubMed  CAS  Google Scholar 

  54. Sah RG, d'Esterre CD, Hill MD, Hafeez M, Tariq S, Forkert ND, et al. Diffusion-weighted MRI stroke volume following recanalization treatment is threshold-dependent. Clin Neuroradiol. 2019;29(1):135–41.

    Article  PubMed  Google Scholar 

  55. •• Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. 2018 Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2018;49(3):e46–e110 National guidelines on the indications of decompressive craniectomy for anterior circulation stroke.

    Article  PubMed  Google Scholar 

  56. Pfefferkorn T, Eppinger U, Linn J, Birnbaum T, Herzog J, Straube A, et al. Long-term outcome after suboccipital decompressive craniectomy for malignant cerebellar infarction. Stroke. 2009;40(9):3045–50.

    Article  PubMed  Google Scholar 

  57. Tsivgoulis G, Zand R, Katsanos AH, Goyal N, Uchino K, Chang J, et al. Safety of intravenous thrombolysis in stroke mimics: prospective 5-year study and comprehensive meta-analysis. Stroke. 2015;46(5):1281–7.

    Article  PubMed  CAS  Google Scholar 

  58. Logallo N, Novotny V, Assmus J, Kvistad CE, Alteheld L, Ronning OM, et al. Tenecteplase versus alteplase for management of acute ischaemic stroke (NOR-TEST): a phase 3, randomised, open-label, blinded endpoint trial. Lancet Neurol. 2017;16(10):781–8.

    Article  PubMed  CAS  Google Scholar 

  59. • Campbell BC, Tu HT, Christensen S, Desmond PM, Levi CR, Bladin CF, et al. Assessing response to stroke thrombolysis: validation of 24-hour multimodal magnetic resonance imaging. Arch Neurol. 2012;69(1):46–50 Data on the validity of 24hour follow-up scan post-treatment.

    Article  PubMed  Google Scholar 

  60. •• Warach SJ, Luby M, Albers GW, Bammer R, Bivard A, Campbell BC, et al. Acute stroke imaging research roadmap III imaging selection and outcomes in acute stroke reperfusion clinical trials: consensus recommendations and further research priorities. Stroke. 2016;47(5):1389–98 Current up-to-date guidelines on the use of imaging post reperfusion treatment.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kranz PG, Eastwood JD. Does diffusion-weighted imaging represent the ischemic core? An evidence-based systematic review. AJNR Am J Neuroradiol. 2009;30(6):1206–12.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. • Campbell BC, Purushotham A, Christensen S, Desmond PM, Nagakane Y, Parsons MW, et al. The infarct core is well represented by the acute diffusion lesion: sustained reversal is infrequent. J Cereb Blood Flow Metab. 2012;32(1):50–6 Earlier imaging analysis of DWI reversal.

    Article  PubMed  Google Scholar 

  63. • Soize S, Tisserand M, Charron S, Turc G, Ben Hassen W, Labeyrie MA, et al. How sustained is 24-hour diffusion-weighted imaging lesion reversal? Serial magnetic resonance imaging in a patient cohort thrombolyzed within 4.5 hours of stroke onset. Stroke. 2015;46(3):704–10 Earlier imaging analysis of DWI reversal.

    Article  PubMed  Google Scholar 

  64. • Inoue M, Mlynash M, Christensen S, Wheeler HM, Straka M, Tipirneni A, et al. Early diffusion-weighted imaging reversal after endovascular reperfusion is typically transient in patients imaged 3 to 6 hours after onset. Stroke. 2014;45(4):1024–8 Earlier imaging analysis of DWI reversal.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Albach FN, Brunecker P, Usnich T, Villringer K, Ebinger M, Fiebach JB, et al. Complete early reversal of diffusion-weighted imaging hyperintensities after ischemic stroke is mainly limited to small embolic lesions. Stroke. 2013;44(4):1043–8.

    Article  PubMed  Google Scholar 

  66. • Li F, Liu KF, Silva MD, Omae T, Sotak CH, Fenstermacher JD, et al. Transient and permanent resolution of ischemic lesions on diffusion-weighted imaging after brief periods of focal ischemia in rats : correlation with histopathology. Stroke. 2000;31(4):946–54 Experimental data on DWI reversal.

    Article  PubMed  CAS  Google Scholar 

  67. Ringer TM, Neumann-Haefelin T, Sobel RA, Moseley ME, Yenari MA. Reversal of early diffusion-weighted magnetic resonance imaging abnormalities does not necessarily reflect tissue salvage in experimental cerebral ischemia. Stroke. 2001;32(10):2362–9.

    Article  PubMed  CAS  Google Scholar 

  68. Tourdias T, Dousset V, Sibon I, Pele E, Menegon P, Asselineau J, et al. Magnetization transfer imaging shows tissue abnormalities in the reversible penumbra. Stroke. 2007;38(12):3165–71.

    Article  PubMed  Google Scholar 

  69. Kidwell CS, Saver JL, Starkman S, Duckwiler G, Jahan R, Vespa P, et al. Late secondary ischemic injury in patients receiving intraarterial thrombolysis. Ann Neurol. 2002;52(6):698–703.

    Article  PubMed  Google Scholar 

  70. Chemmanam T, Campbell BC, Christensen S, Nagakane Y, Desmond PM, Bladin CF, et al. Ischemic diffusion lesion reversal is uncommon and rarely alters perfusion-diffusion mismatch. Neurology. 2010;75(12):1040–7.

    Article  PubMed  CAS  Google Scholar 

  71. Schlaug G, Siewert B, Benfield A, Edelman RR, Warach S. Time course of the apparent diffusion coefficient (ADC) abnormality in human stroke. Neurology. 1997;49(1):113–9.

    Article  PubMed  CAS  Google Scholar 

  72. Bucker A, Boers AM, Bot JCJ, Berkhemer OA, Lingsma HF, Yoo AJ, et al. Associations of ischemic lesion volume with functional outcome in patients with acute ischemic stroke: 24-hour versus 1-week imaging. Stroke. 2017;48(5):1233–40.

    Article  PubMed  Google Scholar 

  73. • Gaudinski MR, Henning EC, Miracle A, Luby M, Warach S, Latour LL. Establishing final infarct volume: stroke lesion evolution past 30 days is insignificant. Stroke. 2008;39(10):2765–8 Longitudinal comparison of infarct volume over time.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Battey TW, Karki M, Singhal AB, Wu O, Sadaghiani S, Campbell BC, et al. Brain edema predicts outcome after nonlacunar ischemic stroke. Stroke. 2014;45(12):3643–8.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Harston GWJ, Carone D, Sheerin F, Jenkinson M, Kennedy J. Quantifying infarct growth and secondary injury volumes: comparing multimodal image registration measures. Stroke. 2018;49(7):1647–55.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Christensen S, Mlynash M, Kemp S, Yennu A, Heit JJ, Marks MP, et al. Persistent target mismatch profile >24 hours after stroke onset in DEFUSE 3. Stroke. 2019;50(3):754–7.

    Article  PubMed  Google Scholar 

  77. •• Boers AMM, Jansen IGH, Brown S, Lingsma HF, Beenen LFM, Devlin TG, et al. Mediation of the relationship between endovascular therapy and functional outcome by follow-up infarct volume in patients with acute ischemic stroke. JAMA Neurol. 2019;76(2):194–202 Recent HERMES meta-analysis of prognostic value of follow-up infarct volume following thrombectomy or thrombolysis.

    Article  PubMed  PubMed Central  Google Scholar 

  78. van Seeters T, Biessels GJ, Kappelle LJ, van der Schaaf IC, Dankbaar JW, Horsch AD, et al. The prognostic value of CT angiography and CT perfusion in acute ischemic stroke. Cerebrovasc Dis. 2015;40(5–6):258–69.

    Article  PubMed  Google Scholar 

  79. Lin L, Cheng X, Bivard A, Levi CR, Dong Q, Parsons MW. Quantifying reperfusion of the ischemic region on whole-brain computed tomography perfusion. J Cereb Blood Flow Metab. 2017;37(6):2125–36.

    Article  PubMed  Google Scholar 

  80. Nguyen TB, Lum C, Eastwood JD, Stys PK, Hogan M, Goyal M. Hyperperfusion on perfusion computed tomography following revascularization for acute stroke. Acta Radiol. 2005;46(6):610–5.

    Article  PubMed  CAS  Google Scholar 

  81. Kidwell CS, Saver JL, Mattiello J, Starkman S, Vinuela F, Duckwiler G, et al. Diffusion-perfusion MRI characterization of post-recanalization hyperperfusion in humans. Neurology. 2001;57(11):2015–21.

    Article  PubMed  CAS  Google Scholar 

  82. Yu S, Liebeskind DS, Dua S, Wilhalme H, Elashoff D, Qiao XJ, et al. Postischemic hyperperfusion on arterial spin labeled perfusion MRI is linked to hemorrhagic transformation in stroke. J Cereb Blood Flow Metab. 2015;35(4):630–7.

    Article  PubMed  PubMed Central  Google Scholar 

  83. • Okazaki S, Yamagami H, Yoshimoto T, Morita Y, Yamamoto H, Toyoda K, et al. Cerebral hyperperfusion on arterial spin labeling MRI after reperfusion therapy is related to hemorrhagic transformation. J Cereb Blood Flow Metab. 2017;37(9):3087–90 Recent clinical data on post-treatment hyperperfusion in relation to hemorrhagic transformation.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Shimonaga K, Matsushige T, Hosogai M, Hashimoto Y, Mizoue T, Ono C, et al. Hyperperfusion after endovascular reperfusion therapy for acute ischemic stroke. J Stroke Cerebrovasc Dis. 2019;28(5):1212–8.

    Article  PubMed  Google Scholar 

  85. • Dalkara T, Arsava EM. Can restoring incomplete microcirculatory reperfusion improve stroke outcome after thrombolysis? J Cereb Blood Flow Metab. 2012;32(12):2091–9 Comprehensive discussion on the potential implications of post-treatment perfusion changes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Albers GW, Thijs VN, Wechsler L, Kemp S, Schlaug G, Skalabrin E, et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol. 2006;60(5):508–17.

    Article  PubMed  Google Scholar 

  87. De Silva DA, Fink JN, Christensen S, Ebinger M, Bladin C, Levi CR, et al. Assessing reperfusion and recanalization as markers of clinical outcomes after intravenous thrombolysis in the echoplanar imaging thrombolytic evaluation trial (EPITHET). Stroke. 2009;40(8):2872–4.

    Article  PubMed  CAS  Google Scholar 

  88. Soares BP, Tong E, Hom J, Cheng SC, Bredno J, Boussel L, et al. Reperfusion is a more accurate predictor of follow-up infarct volume than recanalization: a proof of concept using CT in acute ischemic stroke patients. Stroke. 2010;41(1):e34–40.

    Article  PubMed  Google Scholar 

  89. Ng FC, Coulton B, Chambers B, Thijs V. Persistently elevated microvascular resistance postrecanalization. Stroke. 2018;49(10):2512–5.

    Article  PubMed  Google Scholar 

  90. Desilles JP, Rouchaud A, Labreuche J, Meseguer E, Laissy JP, Serfaty JM, et al. Blood-brain barrier disruption is associated with increased mortality after endovascular therapy. Neurology. 2013;80(9):844–51.

    Article  PubMed  Google Scholar 

  91. Knight RA, Barker PB, Fagan SC, Li Y, Jacobs MA, Welch KM. Prediction of impending hemorrhagic transformation in ischemic stroke using magnetic resonance imaging in rats. Stroke. 1998;29(1):144–51.

    Article  PubMed  CAS  Google Scholar 

  92. Latour LL, Kang DW, Ezzeddine MA, Chalela JA, Warach S. Early blood-brain barrier disruption in human focal brain ischemia. Ann Neurol. 2004;56(4):468–77.

    Article  PubMed  Google Scholar 

  93. Renu A, Laredo C, Lopez-Rueda A, Llull L, Tudela R, San-Roman L, et al. Vessel wall enhancement and blood-cerebrospinal fluid barrier disruption after mechanical thrombectomy in acute ischemic stroke. Stroke. 2017;48(3):651–7.

    Article  PubMed  Google Scholar 

  94. Villringer K, Sanz Cuesta BE, Ostwaldt AC, Grittner U, Brunecker P, Khalil AA, et al. DCE-MRI blood-brain barrier assessment in acute ischemic stroke. Neurology. 2017;88(5):433–40.

    Article  PubMed  Google Scholar 

  95. Simpkins AN, Dias C, Leigh R. National Institutes of Health Natural History of Stroke I. Identification of reversible disruption of the human blood-brain barrier following acute ischemia. Stroke. 2016;47(9):2405–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. •• Leigh R, Jen SS, Hillis AE, Krakauer JW, Barker PB, Stir, et al. Pretreatment blood-brain barrier damage and post-treatment intracranial hemorrhage in patients receiving intravenous tissue-type plasminogen activator. Stroke. 2014;45(7):2030–5 Recent clinical data on blood-brain barrier disruption in thrombectomy patients.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Leigh R, Christensen S, Campbell BC, Marks MP, Albers GW, Lansberg MG, et al. Pretreatment blood-brain barrier disruption and post-endovascular intracranial hemorrhage. Neurology. 2016;87(3):263–9.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Nadareishvili Z, Simpkins AN, Hitomi E, Reyes D, Leigh R. Post-stroke blood-brain barrier disruption and poor functional outcome in patients receiving thrombolytic therapy. Cerebrovasc Dis. 2019:1–8.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce C. V. Campbell.

Ethics declarations

Conflict of Interest

Felix C. Ng and Bruce C.V. Campbell each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Stroke

Glossary

IVT

Intravenous thrombolysis

LVO

Large vessel occlusion

EVT

Endovascular thrombectomy

NCCT

Non-contrast computed tomography

MRI

Magnetic resonance imaging

DSA

Digital subtraction angiography

AOL

Arterial occlusion lesion

IMS

Interventional Management of Stroke study

RCT

Randomised control trials

mTICI

Modified treatment in cerebral ischaemia score

HERMES

Highly Effective Reperfusion Evaluated in Multiple Endovascular Stroke Trials

sICH

Symptomatic intracerebral haemorrhage

BBB

Blood-brain barrier

HT

Haemorrhagic transformation

ECASS

European Cooperative Acute Stroke Study

HI

Haemorrhagic infarction

PH

Parenchymal haematoma

DECT

Dual-energy CT

GRE

Gradient echo

SWI

Susceptibility-weighted imaging

CTP

CT perfusion

MCA

Middle cerebral artery

MLS

Midline shift

DWI

Diffusion-weighted imaging

DLR

Diffusion lesion reversal

ADC

Apparent diffusion coefficient

MRP

MR perfusion

DEFUSE

Diffusion and perfusion imaging evaluation for understanding stroke evolution study

EPITHET

Echoplanar Imaging Thrombolytic Evaluation Trial

FLAIR

Fluid-attenuated inversion recovery

HARM

Hyperintense acute reperfusion marker

DCE

Dynamic contrast-enhanced MRI

DSC

Dynamic susceptibility contrast MRI

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, F.C., Campbell, B.C.V. Imaging After Thrombolysis and Thrombectomy: Rationale, Modalities and Management Implications. Curr Neurol Neurosci Rep 19, 57 (2019). https://doi.org/10.1007/s11910-019-0970-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-019-0970-7

Keywords

Navigation