Skip to main content

Advertisement

Log in

Management of Hepatocellular Carcinoma: Beyond Sorafenib

  • Gastrointestinal Cancers (L Saltz, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

The positive results of sorafenib have unveiled a new direction of research in the management of hepatocellular carcinoma (HCC). Since then intensive efforts have been focused on development of novel management strategy to further improve the outcome for patients with HCC. Emerging data have suggested that tumor progression of HCC is driven by a number of deregulated signaling pathways and/or epigenetic mechanism. Thus much effort is dedicated to identification of novel agents targeting these dysregulated pathways. Combinations of targeted therapeutics and transarterial chemoembolization (TACE), or different systemic therapeutics also hold the promise to improve treatment outcome beyond sorafenib. This review aims to summarize the current status of clinical development of treatment in HCC. Perspectives on future direction of research will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.

    Article  PubMed  Google Scholar 

  2. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76.

    Article  PubMed  CAS  Google Scholar 

  3. Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology. 2005;42:1208–36.

    Article  PubMed  Google Scholar 

  4. Chan SL, Mo FK, Johnson PJ, et al. Prospective validation of the Chinese University Prognostic Index and comparison with other staging systems for hepatocellular carcinoma in an Asian population. J Gastroenterol Hepatol. 2011;26:340–7.

    Article  PubMed  Google Scholar 

  5. Chan SL, Mo FK, Wong VW, et al. Use of antiviral therapy in surveillance: impact on outcome of hepatitis B-related hepatocellular carcinoma. Liver Int 2011 doi:10.1111/j.1478-3231.2011.02634.x.

  6. Llovet JM, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: Chemoembolization improves survival. Hepatology. 2003;37:429–42.

    Article  PubMed  CAS  Google Scholar 

  7. Lo CM, Ngan H, Tso WK, et al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology. 2002;35:1164–71.

    Article  PubMed  CAS  Google Scholar 

  8. Pons F, Varela M, Llovet JM. Staging systems in hepatocellular carcinoma. HPB (Oxford). 2005;7:35–41.

    Article  Google Scholar 

  9. Chan AT, Kishi Y, Chan SL, Vauthey JN. Accomplishments in 2007 in the management of hepatobiliary cancers. Gastrointest Cancer Res. 2008;2:S25–31.

    PubMed  Google Scholar 

  10. Yeo W, Mok TS, Zee B, et al. A randomized phase III study of doxorubicin versus cisplatin/interferon alpha-2b/doxorubicin/fluorouracil (PIAF) combination chemotherapy for unresectable hepatocellular carcinoma. J Natl Cancer Inst. 2005;97:1532–8.

    Article  PubMed  CAS  Google Scholar 

  11. Chan SL, Mo FK, Johnson PJ, et al. New utility of an old marker: serial alpha-fetoprotein measurement in predicting radiologic response and survival of patients with hepatocellular carcinoma undergoing systemic chemotherapy. J Clin Oncol. 2009;27:446–52.

    Article  PubMed  CAS  Google Scholar 

  12. Wilhelm SM, Carter C, Tang L, et al. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64:7099–109.

    Article  PubMed  CAS  Google Scholar 

  13. Chang YS, Adnane J, Trail PA, et al. Sorafenib (BAY 43–9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models. Cancer Chemother Pharmacol. 2007;59:561–74.

    Article  PubMed  CAS  Google Scholar 

  14. Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    Article  PubMed  CAS  Google Scholar 

  15. •• Cheng AL, Kang YK, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10:25–34. This phase III clinical trial showed that sorafenib could prolong overall survival of patients with advanced hepatocellular carcinoma in Asian population.

    Article  PubMed  CAS  Google Scholar 

  16. Toh HC, Chen PJ, Carr BI, et al. Linifanib phase II trial in patients with advanced hepatocellular carcinoma (HCC). J Clin Oncol. 2010;28:15s. suppl; abstr 4038.

    Google Scholar 

  17. Koch I, Baron A, Roberts S, et al. Influence of hepatic dysfunction on safety, tolerability, and pharmacokinetics (PK) of PTK787/ZK 222584 in patients (Pts) with unresectable hepatocellular carcinoma (HCC). J Clin Oncol. 2005;23:341S-S.

    Article  Google Scholar 

  18. Yau T, Chen PJ, Chan P, et al. Phase I dose-finding study of pazopanib in hepatocellular carcinoma: evaluation of early efficacy, pharmacokinetics, and pharmacodynamics. Clin Cancer Res;17:6914–23.

  19. Bolondi L, Tak WY, Gasbarrini A, et al. Phase II safety study of the oral multikinase inhibitor regorafenib (BAY 73–4506) as second-line therapy in patients with hepatocellular carcinoma. Eur J Canc;47:S464-S.

  20. Alberts SR, Morlan BW, Kim GP, et al. NCCTG phase II trial (N044J) of AZD2171 for patients with hepatocellular carcinoma (HCC)--Interim review of toxicity. ASCO Gastrointestinal Cancers Symposium 2007:Abstract number 186.

  21. Faivre S, Raymond E, Boucher E, et al. Safety and efficacy of sunitinib in patients with advanced hepatocellular carcinoma: an open-label, multicentre, phase II study. Lancet Oncol. 2009;10:794–800.

    Article  PubMed  CAS  Google Scholar 

  22. Zhu AX, Sahani DV, Duda DG, et al. Efficacy, safety, and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: a phase II study. J Clin Oncol. 2009;27:3027–35.

    Article  PubMed  CAS  Google Scholar 

  23. Cheng A, Kang D, Lin J, et al. Phase III trial of sunitinib (Su) versus sorafenib (So) in advanced hepatocellular carcinoma (HCC). J Clin Oncol 2011;29:(suppl; abstr 4000).

  24. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008;8:592–603.

    Article  PubMed  CAS  Google Scholar 

  25. Cai ZW, Zhang Y, Borzilleri RM, et al. Discovery of brivanib alaninate ((S)-((R)-1-(4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-5-methylpyrrolo[2,1-f] [1,2,4]triazin-6-yloxy)propan-2-yl)2-aminopropanoate), a novel prodrug of dual vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 kinase inhibitor (BMS-540215). J Med Chem. 2008;51:1976–80.

    Article  PubMed  CAS  Google Scholar 

  26. Park JW, Finn RS, Kim JS, et al. Phase II, open-label study of brivanib as first-line therapy in patients with advanced hepatocellular carcinoma. Clin Cancer Res. 2011;17:1973–83.

    Article  PubMed  CAS  Google Scholar 

  27. Raoul JL, Finn RS, Kang YK, et al. An open-label phase II study of first- and second-line treatment with brivanib in patients with hepatocellular carcinoma (HCC). J Clin Oncol. 2009;27:15s. suppl; abstr 4577.

    Article  Google Scholar 

  28. Laird AD, Vajkoczy P, Shawver LK, et al. SU6668 is a potent antiangiogenic and antitumor agent that induces regression of established tumors. Cancer Res. 2000;60:4152–60.

    PubMed  CAS  Google Scholar 

  29. Nakamura T, Ozawa S, Kitagawa Y, et al. Antiangiogenic agent SU6668 suppresses the tumor growth of xenografted A-431 cells. Oncol Rep. 2006;15:79–83.

    PubMed  CAS  Google Scholar 

  30. Kanai F, Yoshida H, Tateishi R, et al. A phase I/II trial of the oral antiangiogenic agent TSU-68 in patients with advanced hepatocellular carcinoma. Cancer Chemother Pharmacol. 2011;67:315–24.

    Article  PubMed  CAS  Google Scholar 

  31. Lee SH, Lopes de Menezes D, Vora J, et al. In vivo target modulation and biological activity of CHIR-258, a multitargeted growth factor receptor kinase inhibitor, in colon cancer models. Clin Cancer Res. 2005;11:3633–41.

    Article  PubMed  CAS  Google Scholar 

  32. Huynh H, Chow PK, Tai WM, et al. Dovitinib demonstrates anti-tumor and anti-metastatic activities in xenograft models of hepatocellular carcinoma. J Hepatol 2011. doi:10.1016/j.jhep.2011.09.017.

  33. Siegel AB, Cohen EI, Ocean A, et al. Phase II trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma. J Clin Oncol. 2008;26:2992–8.

    Article  PubMed  CAS  Google Scholar 

  34. Zhu AX, Finn RS, Mulcahy MF, et al. A phase II study of ramucirumab as first-line monotherapy in patients (pts) with advanced hepatocellular carcinoma (HCC). J Clin Oncol 2010;28:suppl; abstr 4083.

    Google Scholar 

  35. Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361:947–57.

    Article  PubMed  CAS  Google Scholar 

  36. Van Cutsem E, Kohne CH, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360:1408–17.

    Article  PubMed  Google Scholar 

  37. Whittaker S, Marais R, Zhu AX. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene. 2010;29:4989–5005.

    Article  PubMed  CAS  Google Scholar 

  38. Morimitsu Y, Hsia CC, Kojiro M, Tabor E. Nodules of less-differentiated tumor within or adjacent to hepatocellular carcinoma: relative expression of transforming growth factor-alpha and its receptor in the different areas of tumor. Hum Pathol. 1995;26:1126–32.

    Article  PubMed  CAS  Google Scholar 

  39. Nalesnik MA, Lee RG, Carr BI. Transforming growth factor alpha (TGFalpha) in hepatocellular carcinomas and adjacent hepatic parenchyma. Hum Pathol. 1998;29:228–34.

    Article  PubMed  CAS  Google Scholar 

  40. Chung YH, Kim JA, Song BC, et al. Expression of transforming growth factor-alpha mRNA in livers of patients with chronic viral hepatitis and hepatocellular carcinoma. Cancer. 2000;89:977–82.

    Article  PubMed  CAS  Google Scholar 

  41. Philip PA, Mahoney MR, Allmer C, et al. Phase II study of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer. J Clin Oncol. 2005;23:6657–63.

    Article  PubMed  CAS  Google Scholar 

  42. Thomas MB, Chadha R, Glover K, et al. Phase 2 study of erlotinib in patients with unresectable hepatocellular carcinoma. Cancer. 2007;110:1059–67.

    Article  PubMed  CAS  Google Scholar 

  43. Ramanathan RK, Belani CP, Singh DA, et al. A phase II study of lapatinib in patients with advanced biliary tree and hepatocellular cancer. Cancer Chemother Pharmacol. 2009;64:777–83.

    Article  PubMed  CAS  Google Scholar 

  44. Bekaii-Saab T, Markowitz J, Prescott N, et al. A multi-institutional phase II study of the efficacy and tolerability of lapatinib in patients with advanced hepatocellular carcinomas. Clin Cancer Res. 2009;15:5895–901.

    Article  PubMed  CAS  Google Scholar 

  45. Zhu AX, Stuart K, Blaszkowsky LS, et al. Phase 2 study of cetuximab in patients with advanced hepatocellular carcinoma. Cancer. 2007;110:581–9.

    Article  PubMed  CAS  Google Scholar 

  46. Gruenwald Y, Wilkens L, Gebel M, et al. A phase II open-label study of cetuximab in unresectable hepatocellular carcinoma: final results. ASCO Annual Meeting Proceedings 2007;Part I. Vol 25, No. 18S 4598.

  47. Pediaditakis P, Lopez-Talavera JC, Petersen B, et al. The processing and utilization of hepatocyte growth factor/scatter factor following partial hepatectomy in the rat. Hepatology. 2001;34:688–93.

    Article  PubMed  CAS  Google Scholar 

  48. Huh CG, Factor VM, Sanchez A, et al. Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci U S A. 2004;101:4477–82.

    Article  PubMed  CAS  Google Scholar 

  49. Michieli P, Mazzone M, Basilico C, et al. Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell. 2004;6:61–73.

    Article  PubMed  CAS  Google Scholar 

  50. Comoglio PM, Trusolino L. Invasive growth: from development to metastasis. J Clin Invest. 2002;109:857–62.

    PubMed  CAS  Google Scholar 

  51. Kiss A, Wang NJ, Xie JP, Thorgeirsson SS. Analysis of transforming growth factor (TGF)-alpha/epidermal growth factor receptor, hepatocyte growth Factor/c-met, TGF-beta receptor type II, and p53 expression in human hepatocellular carcinomas. Clin Cancer Res. 1997;3:1059–66.

    PubMed  CAS  Google Scholar 

  52. Osada S, Kanematsu M, Imai H, Goshima S. Clinical significance of serum HGF and c-Met expression in tumor tissue for evaluation of properties and treatment of hepatocellular carcinoma. Hepatogastroenterology. 2008;55:544–9.

    PubMed  CAS  Google Scholar 

  53. Ljubimova JY, Petrovic LM, Wilson SE, et al. Expression of HGF, its receptor c-met, c-myc, and albumin in cirrhotic and neoplastic human liver tissue. J Histochem Cytochem. 1997;45:79–87.

    Article  PubMed  CAS  Google Scholar 

  54. Okano J, Shiota G, Kawasaki H. Expression of hepatocyte growth factor (HGF) and HGF receptor (c-met) proteins in liver diseases: an immunohistochemical study. Liver. 1999;19:151–9.

    Article  PubMed  CAS  Google Scholar 

  55. Kaposi-Novak P, Lee JS, Gomez-Quiroz L, et al. Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J Clin Invest. 2006;116:1582–95.

    Article  PubMed  CAS  Google Scholar 

  56. Ueki T, Fujimoto J, Suzuki T, et al. Expression of hepatocyte growth factor and its receptor, the c-met proto-oncogene, in hepatocellular carcinoma. Hepatology. 1997;25:619–23.

    Article  PubMed  CAS  Google Scholar 

  57. Ke AW, Shi GM, Zhou J, et al. Role of overexpression of CD151 and/or c-Met in predicting prognosis of hepatocellular carcinoma. Hepatology. 2009;49:491–503.

    Article  PubMed  CAS  Google Scholar 

  58. You H, Ding W, Dang H, et al. c-Met represents a potential therapeutic target for personalized treatment in hepatocellular carcinoma. Hepatology. 2011;54:879–89.

    Article  PubMed  CAS  Google Scholar 

  59. Adjei AA, Schwartz B, Garmey E. Early clinical development of ARQ 197, a selective, non-ATP-competitive inhibitor targeting MET tyrosine kinase for the treatment of advanced cancers. Oncologist. 2011;16:788–99.

    Article  PubMed  CAS  Google Scholar 

  60. Zucali P, Santoro A, Rodriguez-Lope C, et al. Final results from ARQ 197–114: a phase Ib safety trial evaluating ARQ 197 in cirrhotic patients (pts) with hepatocellular carcinoma (HCC). J Clin Oncol 2010;28:suppl; abstr 4137.

    Google Scholar 

  61. Villanueva A, Chiang DY, Newell P, et al. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology. 2008;135:1972–83. 83 e1-11.

    Article  PubMed  CAS  Google Scholar 

  62. Sahin F, Kannangai R, Adegbola O, et al. mTOR and P70 S6 kinase expression in primary liver neoplasms. Clin Cancer Res. 2004;10:8421–5.

    Article  PubMed  CAS  Google Scholar 

  63. Zhu AX, Abrams TA, Miksad R, et al. Phase 1/2 study of everolimus in advanced hepatocellular carcinoma. Cancer. 2011;117:5094–102.

    Article  PubMed  CAS  Google Scholar 

  64. Huynh H, Nguyen TT, Chow KH, et al. Over-expression of the mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK in hepatocellular carcinoma: its role in tumor progression and apoptosis. BMC Gastroenterol. 2003;3:19.

    Article  PubMed  Google Scholar 

  65. O’Neil BH, Goff LW, Kauh JS, et al. Phase II study of the mitogen-activated protein kinase 1/2 inhibitor selumetinib in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2011;29:2350–6.

    Article  PubMed  Google Scholar 

  66. Balmanno K, Chell SD, Gillings AS, et al. Intrinsic resistance to the MEK1/2 inhibitor AZD6244 (ARRY-142886) is associated with weak ERK1/2 signalling and/or strong PI3K signalling in colorectal cancer cell lines. Int J Cancer. 2009;125:2332–41.

    Article  PubMed  CAS  Google Scholar 

  67. Ball DW, Jin N, Rosen DM, et al. Selective growth inhibition in BRAF mutant thyroid cancer by the mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244. J Clin Endocrinol Metab. 2007;92:4712–8.

    Article  PubMed  CAS  Google Scholar 

  68. Rodriguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med. 2011;17:330–9.

    Article  PubMed  CAS  Google Scholar 

  69. Um TH, Kim H, Oh BK, et al. Aberrant CpG island hypermethylation in dysplastic nodules and early HCC of hepatitis B virus-related human multistep hepatocarcinogenesis. J Hepatol. 2011;54:939–47.

    Article  PubMed  CAS  Google Scholar 

  70. Piekarz RL, Frye R, Turner M, et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol. 2009;27:5410–7.

    Article  PubMed  CAS  Google Scholar 

  71. Mann BS, Johnson JR, He K, et al. Vorinostat for treatment of cutaneous manifestations of advanced primary cutaneous T-cell lymphoma. Clin Cancer Res. 2007;13:2318–22.

    Article  PubMed  CAS  Google Scholar 

  72. • Ma BB, Sung F, Tao Q, et al. The preclinical activity of the histone deacetylase inhibitor PXD101 (belinostat) in hepatocellular carcinoma cell lines. Invest New Drugs. 2010;28:107–14. This study provided preclinical evidence of efficacy on a novel class of agent, histone deacetylase inhibitor, in HCC cell lines.

    Article  PubMed  CAS  Google Scholar 

  73. Carlisi D, Lauricella M, D’Anneo A, et al. The histone deacetylase inhibitor suberoylanilide hydroxamic acid sensitises human hepatocellular carcinoma cells to TRAIL-induced apoptosis by TRAIL-DISC activation. Eur J Cancer. 2009;45:2425–38.

    Article  PubMed  CAS  Google Scholar 

  74. Carlisi D, Vassallo B, Lauricella M, et al. Histone deacetylase inhibitors induce in human hepatoma HepG2 cells acetylation of p53 and histones in correlation with apoptotic effects. Int J Oncol. 2008;32:177–84.

    PubMed  CAS  Google Scholar 

  75. Yeo W, Chung HC, Chan SL, et al. A phase II study of epigenetic therapy using belinostat for patients with unresectable hepatocellular carcinoma—a multicenter study of the Mayo Phase 2 Consortium (P2C) and the Cancer Therapeutics Research Group (CTRG). Eur J Canc;47:S470-S1.

  76. Li X, Feng GS, Zheng CS, et al. Expression of plasma vascular endothelial growth factor in patients with hepatocellular carcinoma and effect of transcatheter arterial chemoembolization therapy on plasma vascular endothelial growth factor level. World J Gastroenterol. 2004;10:2878–82.

    PubMed  CAS  Google Scholar 

  77. Wang B, Xu H, Gao ZQ, et al. Increased expression of vascular endothelial growth factor in hepatocellular carcinoma after transcatheter arterial chemoembolization. Acta Radiol. 2008;49:523–9.

    Article  PubMed  CAS  Google Scholar 

  78. Sergio A, Cristofori C, Cardin R, et al. Transcatheter Arterial Chemoembolization (TACE) in Hepatocellular Carcinoma (HCC): The Role of Angiogenesis and Invasiveness. Am J Gastroenterol 2008.

  79. Jiang H, Meng Q, Tan H, et al. Antiangiogenic therapy enhances the efficacy of transcatheter arterial embolization for hepatocellular carcinomas. Int J Cancer. 2007;121:416–24.

    Article  PubMed  CAS  Google Scholar 

  80. Dufour JF, Hoppe H, Heim MH, et al. Continuous administration of sorafenib in combination with transarterial chemoembolization in patients with hepatocellular carcinoma: results of a phase I study. Oncologist;15:1198–204.

  81. Kudo M, Imanaka K, Chida N, et al. Phase III study of sorafenib after transarterial chemoembolisation in Japanese and Korean patients with unresectable hepatocellular carcinoma. Eur J Canc;47:2117–27.

  82. • Pawlik TM, Reyes DK, Cosgrove D, et al. Phase II trial of Sorafenib combined with concurrent transarterial chemoembolization with drug-eluting beads for hepatocellular carcinoma. J Clin Oncol. 2011;29:3960–7. This single-arm phase II study is the first clinical trial which demonstrated the potential efficacy and feasibility of combining targeted therapy and transarterial therapy for hepatocellular carcinoma.

    Article  PubMed  CAS  Google Scholar 

  83. Abou-Alfa GK. TACE and Sorafenib: a good marriage? J Clin Oncol. 2011;29:3949–52.

    Article  PubMed  CAS  Google Scholar 

  84. O’Reilly KE, Rojo F, She QB, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66:1500–8.

    Article  PubMed  Google Scholar 

  85. Alberts SR, Reid JM, Morlan BW, et al. Gemcitabine and docetaxel for hepatocellular carcinoma: a Phase II North Central Cancer Treatment Group Clinical Trial. Am J Clin Oncol 2011; doi:10.1097/COC.0b013e318219863b.

  86. Coriat R, Mir O, Cessot A, et al. Feasibility of oxaliplatin, 5-fluorouracil and leucovorin (FOLFOX-4) in cirrhotic or liver transplant patients: experience in a cohort of advanced hepatocellular carcinoma patients. Invest New Drugs 2011 doi:10.1007/s10637-010-9525-0.

  87. • Abou-Alfa GK, Johnson P, Knox JJ, et al. Doxorubicin plus sorafenib vs doxorubicin alone in patients with advanced hepatocellular carcinoma: a randomized trial. Jama. 2010;304:2154–60. This paper reported on a randomized phase II clinical trial on the combination of chemotherapy and sorafenib in patients with advanced hepatocellular carcinoma. The study showed a promising survival benefit favoring the combination arm compared to doxorubicin alone.

    Article  PubMed  CAS  Google Scholar 

  88. Hsu CH, Shen YC, Lin ZZ, et al. Phase II study of combining sorafenib with metronomic tegafur/uracil for advanced hepatocellular carcinoma. J Hepatol. 2011;53:126–31.

    Article  Google Scholar 

  89. Yau T, Chan P, Cheung FY, et al. Phase II trial of sorafenib with capecitabine and oxaliplatin (SECOX) in patients with locally advanced or metastatic hepatocellular carcinoma. Ejc Supplements. 2009;7:20–1.

    Google Scholar 

  90. Thomas MB, Morris JS, Chadha R, et al. Phase II trial of the combination of bevacizumab and erlotinib in patients who have advanced hepatocellular carcinoma. J Clin Oncol. 2009;27:843–50.

    Article  PubMed  CAS  Google Scholar 

  91. Hsu CH, Yang TS, Hsu C, et al. Efficacy and tolerability of bevacizumab plus capecitabine as first-line therapy in patients with advanced hepatocellular carcinoma. Br J Cancer. 2010;102:981–6.

    Article  PubMed  CAS  Google Scholar 

  92. Philip PA, Mahoney MR, Holen KD, et al. Phase 2 study of bevacizumab plus erlotinib in patients with advanced hepatocellular cancer. Cancer 2011 doi:10.1002/cncr.26556.

  93. van Malenstein H, van Pelt J, Verslype C. Molecular classification of hepatocellular carcinoma anno 2011. Eur J Cancer. 2011;47:1789–97.

    Article  PubMed  Google Scholar 

  94. Toh HC, Chen P, Knox JJ, et al. International phase 2 trial of ABT-869 in patients with advanced hepatocellular carcinoma (HCC). Ejc Supplements. 2009;7:366–7.

    Google Scholar 

  95. Chan SL, Yeo W. Targeted therapy of hepatocellular carcinoma: Present and future. J Gastroenterol Hepatol. 2012 doi:10.1111/j.1440-1746.2012.07096.x.

Download references

Disclosure

S. L. Chan: advisor for AstraZeneca and Novartis; T. Mok: advisor and received honorarium for speech engagement from AstraZeneca, Pfizer, Roche, Boehringer-Ingelheim, Eli Lilly, Eisai, AVEO, and Taiho; B. B.Y. Ma: none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Mok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, S.L., Mok, T. & Ma, B.B.Y. Management of Hepatocellular Carcinoma: Beyond Sorafenib. Curr Oncol Rep 14, 257–266 (2012). https://doi.org/10.1007/s11912-012-0233-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-012-0233-0

Keywords

Navigation