Skip to main content

Advertisement

Log in

Advanced Pancreatic Neuroendocrine Neoplasms: Which Systemic Treatment Should I Start With?

  • Neuroendocrine Neoplasms (NS Reed, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Pancreatic neuroendocrine neoplasms (panNENs) often present as advanced disease and there is little data to guide treatment sequencing in the advance disease setting. Therefore, we aim to provide a comprehensive summary of the current evidence supporting the use of systemic treatment for patients with diagnosis of advanced and metastatic panNENs, as well as to provide strategies for treatment selection and address challenges for treatment selection and sequencing of therapy.

Recent Findings

Substantial advances have been made and many clinical trials have been performed over the past two decades expanding therapeutic options available for patients with advanced panNETs. Available systemic treatments for patients with well-differentiated pancreatic neuroendocrine tumors include somatostatin receptors ligands (SRLs), traditional cytotoxic chemotherapy regimens, peptide receptor radiotherapy (PRRT), and biologically targeted therapies, whereas patients with poorly differentiated neurodocrine carcinomas have more limited treatment options. Despite these advances, no clear guidelines exist to support the best sequence of treatments, not only the first-line, but also subsequent lines of therapy in patients with panNENs. Advances in molecular research and discovery of biomarkers for response allowing a more personalized approach to the multimodality therapy of panNENs are still limited. Understanding the impact of previous therapies on subsequent treatment efficacy and toxicity is also an ongoing research question.

Summary

In the absence of definite predictive markers and paucity of comparative randomized trials, along with the heterogeneity of this patient population, systemic therapy selection in advanced non-resectable disease should be patient centered and often require evaluation within a multidisciplinary setting. The specific clinical context of the patient, with assessment of individual patient clinical and pathological features, somatostatin receptors imaging, and goals of treatment must all be considered when deciding on systemic therapy in the patient. Additional research is needed to address the gap in knowledge regarding optimal sequencing and timing of therapies and to provide individual care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Howlader N, Noone AM, Krapcho M, et al. editors. SEER Cancer Statistics Review, 1975-2017. Bethesda: National Cancer Institute. Available online: https://seer.cancer.gov/csr/1975_2017/, based on November 2019 SEER data submission, posted to the SEER web site, April 2020.

  2. • Dasari A, Shen C, Halperin D, et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 2017;3:1335–42 This study showed the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the USA.

    PubMed  PubMed Central  Google Scholar 

  3. Halfdanarson TR, Rabe KG, Rubin J, Petersen GM. Pancreatic neuroendocrine tumors (pNETs): incidence, prognosis and recent trend toward improved survival. Ann Oncol. 2008;19:1727–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Yao JC, Hassan M, Phan A, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26:3063–72.

    PubMed  Google Scholar 

  5. Hallet J, Law CH, Cukier M, Saskin R, Liu N, Singh S. Exploring the rising incidence of neuroendocrine tumors: a population-based analysis of epidemiology, metastatic presentation, and outcomes. Cancer. 2015;121(4):589–97. https://doi.org/10.1002/cncr.29099.

    Article  PubMed  Google Scholar 

  6. Ito T, Lee L, Jensen RT. Treatment of symptomatic neuroendocrine tumor syndromes: recent advances and controversies. Expert Opin Pharmacother. 2016;17:2191–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim JY, Hong S-M, Ro JY. Recent updates on grading and classification of neuroendocrine tumors. Ann Diagn Pathol. 2017;29:11–6.

    PubMed  Google Scholar 

  8. Choe J, Kim KW, Kim HJ, Kim DW, Kim KP, Hong S-M, et al. What is new in the 2017 World Health Organization classification and 8th American Joint Committee on Cancer Staging System for pancreatic neuroendocrine neoplasms? Korean J Radiol. 2019;20:5–17.

  9. Singh S, Dey C, Kennecke H, et al. Consensus recommendations for the diagnosis and management of pancreatic neuroendocrine tumors: guidelines from a Canadian national expert group. Ann Surg Oncol. 2015;22:2685–99. https://doi.org/10.1245/s10434-014-4145-0.

    Article  PubMed  Google Scholar 

  10. Partelli S, Bartsch DK, Capdevila J, et al. ENETS consensus guidelines for standard of care in neuroendocrine tumours: surgery for small intestinal and pancreatic neuroendocrine tumours. Neuroendocrinology. 2017;105:255–65.

    CAS  PubMed  Google Scholar 

  11. Kulke MH. Sequencing and combining systemic therapies for pancreatic neuroendocrine tumors. J Clin Oncol. 2015;33:1534–8.

    PubMed  Google Scholar 

  12. Falconi M, Eriksson B, Kaltsas G, Bartsch DK, Capdevila J, Caplin M, et al. ENETS consensus guidelines update for the management of patients with functional pancreatic neuroendocrine tumors and non-functional pancreatic neuroendocrine tumors. Neuroendocrinology. 2016;103(2):153–71. https://doi.org/10.1159/000443171.

  13. •• Pavel M, Öberg K, Falconi M, Krenning EP, Sundin A, Perren A, et al. ESMO Guidelines Committee. Ann Oncol. 2020;31(7):844–60. https://doi.org/10.1016/j.annonc.2020.03.304This study showed the most up-to-date European Guidelines in patients with neuroendocrine tumors.

  14. •• Halfdanarson TR, Strosberg JR, Tang L, Bellizzi AM, Bergsland EK, OʼDorisio TM, et al. The North American Neuroendocrine Tumor Society Consensus Guidelines for surveillance and medical management of pancreatic neuroendocrine tumors. Pancreas. 2020;49(7):863–81. https://doi.org/10.1097/MPA.0000000000001597This study showed the most up-to-date North American Neuroendocrine Tumor Society Consensus Guidelines in patients with pancreatic neuroendocrine tumors.

  15. Caplin ME, Pavel M, Cwikła JB, Phan AT, Raderer M, Sedláčková E, et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med. 2014;371:224–33.

  16. Pavel M et al. Efficacy and safety of lanreotide autogel (LAN) 120 mg every 14 days in progressive pancreatic or midgut neuroendocrine tumours (NETs): CLARINET FORTE study results. Abstract presented at ESMO Virtual Congress 2020, 19–21 September.

  17. Yao JC, Lombard-Bohas C, Baudin E, et al. Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol. 2010;28:69–76.

    CAS  PubMed  Google Scholar 

  18. Kulke MH, Ruszniewski P, Van Cutsem E, Lombard-Bohas C, Valle JW, De Herder WW, et al. A randomized, open-label, phase 2 study of everolimus in combination with pasireotide LAR or everolimus alone in advanced, well-differentiated, progressive pancreatic neuroendocrine tumors: COOPERATE-2 trial. Ann Oncol. 2017;28:1309–15.

  19. LUTATHERA® (Lutetium Lu 177 dotatate) Injection, for intravenous use. Millburn, NJ: Advanced Accelerator Applications USA, Inc.; 2018.

  20. Lepage C, Phelip JM, LIÈVRE A, Le Malicot K, Tougeron D, Dahan L, et al. Lanreotide as maintenance therapy after first-line treatment in patients with non-resectable duodeno-pancreatic neuroendocrine tumours (NETs): an international double-blind, placebo-controlled randomized phase II trial. Ann Oncol. 2020;31(suppl_4):S711–24. https://doi.org/10.1016/annonc/annonc281.

  21. Proye CA, Lokey JS. Current concepts in functioning endocrine tumors of the pancreas. World J Surg. 2004;28:1231–8.

    PubMed  Google Scholar 

  22. Singh S, Granberg D, Wolin E, et al. Patient-reported burden of a neuroendocrine tumor (NET) diagnosis: results from the first global survey of patients with NETs. J Glob Oncol. 2016;3:43–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wolin EM. The expanding role of somatostatin analogs in the management of neuroendocrine tumors. Gastrointest Cancer Res. 2012;5:161–8.

    PubMed  PubMed Central  Google Scholar 

  24. Tirosh A, Stemmer SM, Solomonov E, et al. Pasireotide for malignant insulinoma. Hormones (Athens). 2016;15:271–6.

    Google Scholar 

  25. Yao JC, Shah MH, Ito T, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364:514e523.

    Google Scholar 

  26. Kulke MH, Niedzwiecki D, Foste N, et al. Randomized phase II study of everolimus (E) versus everolimus plus bevacizumab (E+B) in patients (Pts) with locally advanced or metastatic pancreatic neuroendocrine tumors (pNET), CALGB 80701 (Alliance). JCO. 2015;33(15 suppl):4005.

    Google Scholar 

  27. Chan JA, Blaszkowsky L, Stuart K, et al. A prospective, phase 1/2 study of everolimus and temozolomide in patients with advanced pancreatic neuroendocrine tumor. Cancer. 2013;119(17):3212–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Raymond E, Dahan L, Raoul JL, et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med. 2011;364:501–13.

    CAS  PubMed  Google Scholar 

  29. Raymond E, Kulke MH, Qin S, et al. The efficacy and safety of sunitinib in patients with advanced well-differentiated pancreatic neuroendocrine tumors. JCO. 2017;35(4 suppl):380.

    Google Scholar 

  30. • Xu J, Shen L, Bai C, et al. Surufatinib in advanced pancreatic neuroendocrine tumours (SANET-p): a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2020. https://doi.org/10.1016/S1470-2045(20)30493-9This study showed the efficacy of surufatinib in advanced pancreatic neuroendocrine tumors.

  31. Capdevila J, Fazio N, Lopez C, et al. Final results of the TALENT trial (GETNE1509): a prospective multicohort phase II study of lenvatinib in patients (pts) with G1/G2 advanced pancreatic (panNETs) and gastrointestinal (giNETs) neuroendocrine tumors (NETs). JCO. 2019;37(15 suppl):4106.

    Google Scholar 

  32. Chan J, Faris JE, Murphy JE, et al. Phase II trial of cabozantinib in patients with carcinoid and pancreatic neuroendocrine tumors (pNET). JCO. 2017;35(4 suppl):228.

    Google Scholar 

  33. Ahn HK, Choi JY, Kim KM, et al. Phase II study of pazopanib monotherapy in metastatic gastroenteropancreatic neuroendocrine tumours. Br J Cancer. 2013;109(6):1414–9. https://doi.org/10.1038/bjc.2013.470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hobday T, Rubin J, Holen K, et al. MC044h, a phase II trial of sorafenib in patients (pts) with metastatic neuroendocrine tumors (NET): a Phase II Consortium (P2C) study. JCO. 2007;25:4504.

    Google Scholar 

  35. Castellano D, Capdevila J, Sastre J, et al. Sorafenib and bevacizumab combination targeted therapy in advanced neuroendocrine tumour: a phase II study of Spanish Neuroendocrine Tumour Group (GETNE0801). Eur J Cancer. 2013;49(18):3780–7. https://doi.org/10.1016/j.ejca.2013.06.042.

    Article  CAS  PubMed  Google Scholar 

  36. Hobday T, Qin R, Lagunes-Reidy D, et al. Multicenter phase II trial of temsirolimus and bevacizumab in pancreatic neuroendocrine tumors. JCO. 2015;33(14):1551–6. https://doi.org/10.1200/JCO.2014.56.2082.

    Article  CAS  Google Scholar 

  37. Kulke MH, Bergsland EK, Yao JC. Glycemic control in patients with insulinoma treated with everolimus. N Engl J Med. 2009;360:195–7.

    CAS  PubMed  Google Scholar 

  38. Brown E, Watkin D, Evans J, et al. Multidisciplinary management of refractory insulinomas. Clin Endocrinol. 2018;88:615–24.

    Google Scholar 

  39. Baudin E, Caron P, Lombard-Bohas C, et al. Malignant insulinoma: recommendations for characterisation and treatment. Ann Endocrinol (Paris). 2013;74:523–33.

    Google Scholar 

  40. Baratelli C, Brizzi MP, Tampellini M, et al. Intermittent everolimus administration for malignant insulinoma. Endocrinol Diabetes Metab Case Rep. 2014;2014:140047.

    PubMed  PubMed Central  Google Scholar 

  41. Bernard V, Lombard-Bohas C, Taquet MC, et al. Efficacy of everolimus in patients with metastatic insulinoma and refractory hypoglycemia. Eur J Endocrinol. 2013;168:665–74.

    CAS  PubMed  Google Scholar 

  42. Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 trial of (177)LuDotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376:125e135.

    Google Scholar 

  43. Brabander T, Zwan WA, Teunissen JJM, Kam BLR, Feelders RA, Herder WW, et al. Long-term efficacy, survival, and safety of [177Lu-DOTA0,Tyr3] octreotate in patients with gastroenteropancreatic and bronchial neuroendocrine tumors. Clin Cancer Res. 2017;23(16):4617–24.

  44. Ramage J, Naraev BG, Halfdanarson TR. Peptide receptor radionuclide therapy for patients with advanced pancreatic neuroendocrine tumors. Semin Oncol. 2018;45:236–48.

    CAS  PubMed  Google Scholar 

  45. Sansovini M, Severi S, Ianniello A, et al. Long-term follow-up and role of FDG PET in advanced pancreatic neuroendocrine patients treated with 177Lu-DOTATATE. Eur J Nucl Med Mol Imaging. 2017;44:490–9.

    CAS  PubMed  Google Scholar 

  46. Magalhães D, Sampaio IL, Ferreira G, et al. Peptide receptor radionuclide therapy with 177Lu-DOTA-TATE as a promising treatment of malignant insulinoma: a series of case reports and literature review. J Endocrinol Investig. 2019;42:249–60.

    Google Scholar 

  47. Zandee WT, Brabander T, Blazevic A, et al. Symptomatic and radiological response to 177Lu-DOTATATE for the treatment of functioning pancreatic neuroendocrine tumors. J Clin Endocrinol Metab. 2019;104:1336e1344.

    Google Scholar 

  48. Lamarca A, Elliott E, Barriuso J, et al. Chemotherapy for advanced non-pancreatic well-differentiated neuroendocrine tumours of the gastrointestinal tract, a systematic review and meta-analysis: a lost cause? Cancer Treat Rev. 2016;44:26e41.

    Google Scholar 

  49. Moertel CG, Lefkopoulo M, Lipsitz S, et al. Streptozocin-doxorubicin, streptozocin-fluorouracil or chlorozotocin in the treatment of advanced islet-cell carcinoma. N Engl J Med. 1992;326:519–23.

    CAS  PubMed  Google Scholar 

  50. Kouvaraki MA, Ajani JA, Ho P, Wol R, Evans DB, Lozano R, et al. Fluorouracil, doxorubicin, and streptozocin in the treatment of patients with locally advanced and metastatic pancreatic endocrine carcinomas. J Clin Oncol. 2004;22:4762–71.

  51. Turner NC, Strauss SJ, Sarker D, Gillmore R, Kirkwood A, Hackshaw A, et al. Chemotherapy with 5-fluorouracil, cisplatin and streptozocin for neuroendocrine tumours. Br J Cancer. 2010;102:1106–12.

  52. Venook AP, Ko AH, Tempero MA, Uy J, Weber T, Korn M, et al. Phase II trial of FOLFOX plus bevacizumab in advanced, progressive neuroendocrine tumors. J Clin Oncol. 2008;26:15545.

  53. Kunz PL, Kuo T, Zahn JM, Kaiser HL, Norton JA, Visser BC, et al. A phase II study of capecitabine, oxaliplatin, and bevacizumab for metastatic or unresectable neuroendocrine tumors. J Clin Oncol. 2010;28:4104.

  54. Kunz PL, Balise RR, Fehrenbacher L, Pan M, Venook AP, Fisher GA, et al. Oxaliplatin-fluoropyrimidine chemotherapy plus bevacizumab in advanced neuroendocrine tumors: an analysis of 2 phase II trials. Pancreas. 2016;45:1394–400.

  55. Ramanathan RK, Cnaan A, Hahn RG, Carbone PP, Haller DG. Phase II trial of dacarbazine (DTIC) in advanced pancreatic islet cell carcinoma. Study of the Eastern Cooperative Oncology Group-E6282. Ann Oncol. 2001;12:1139–43.

    CAS  PubMed  Google Scholar 

  56. Ekeblad S, Sundin A, Janson ET, Welin S, Granberg D, Kindmark H, et al. Temozolomide as monotherapy is effective in treatment of advanced malignant neuroendocrine tumors. Clin Cancer Res. 2007;13:2986–91.

  57. •• Kunz PL, Catalano PJ, Nimeiri H, et al. A randomized study of temozolomide or temozolomide and capecitabine in patients with advanced pancreatic neuroendocrine tumors: a trial of the ECOG-ACRIN Cancer Research Group (E2211). J Clin Oncol. 2018;36(suppl 15):abstr 4004.

    Google Scholar 

  58. Cives M, Ghayouri M, Morse B, et al. Analysis of potential response predictors to capecitabine/temozolomide in metastatic pancreatic neuroendocrine tumors. Endocr Relat Cancer. 2016;23:759–67.

    CAS  PubMed  Google Scholar 

  59. McGarrah PW, Hobday TJ, Starr JS, et al. Efficacy of somatostatin analog (SSA) monotherapy for well-differentiated grade 3 (G3) gastroenteropancreatic neuroendocrine tumors (NETs). J Clin Oncol. 2020;38(suppl 4):abstr 617.

    Google Scholar 

  60. Pellat A, Dreyer C, Couffignal C, et al. Clinical and biomarker evaluations of sunitinib in patients with Grade 3 digestive neuroendocrine neoplasms. Neuroendocrinology. 2018;107:24e31.

    Google Scholar 

  61. Sorbye H, Welin S, Langer SW, et al. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann Oncol. 2013;24:152–60.

    CAS  PubMed  Google Scholar 

  62. Raj N, Valentino E, Capanu M, et al. Treatment response and outcomes of grade 3 pancreatic neuroendocrine neoplasms based on morphology: well differentiated versus poorly differentiated. Pancreas. 2017;46:296–301.

    PubMed  PubMed Central  Google Scholar 

  63. Roquin G, Baudin E, Lombard-Bohas C, et al. Chemotherapy for well-differentiated pancreatic neuroendocrine tumours with a Ki67 index ≥10%: is there a more effective antitumour regimen? A retrospective multicentre study of the French Group of Endocrine Tumours (GTE). Neuroendocrinology. 2018;106:38–46.

    CAS  PubMed  Google Scholar 

  64. Chan D, Bergsland EK, Chan JA, et al. Temozolamide in grade III neuroendocrine neoplasms (G3 NENs): a multicenter retrospective review. J Clin Oncol. 2019;37(4_supple):321–1. https://doi.org/10.1200/JCO.2019.37.4_suppl.321.

  65. Thomas K, Voros BA, Meadows-Taylor M, et al. Outcomes of capecitabine and temozolomide (CAPTEM) in advanced neuroendocrine neoplasms (NENs). Cancers (Basel). 2020;12:206.

    CAS  Google Scholar 

  66. Sahu A, Jefford M, Lai-Kwon J, et al. CAPTEM in metastatic well-differentiated intermediate to high grade neuroendocrine tumors: a single centre experience. J Oncol. 2019;2019:9032753.

    PubMed  PubMed Central  Google Scholar 

  67. Rogowski W, Wachula E, Gorzelak A, et al. Capecitabine and temozolomide combination for treatment of high-grade, well-differentiated neuroendocrine tumour and poorly-differentiated neuroendocrine carcinoma—retrospective analysis. Endokrynol Pol. 2019;70:313–7.

    CAS  PubMed  Google Scholar 

  68. Hentic O, Hammel P, Couvelard A, et al. FOLFIRI regimen: an effective second-line chemotherapy after failure of etoposide platinum combination in patients with neuroendocrine carcinomas grade 3. Endocr Relat Cancer. 2012;19:751–7.

    CAS  PubMed  Google Scholar 

  69. Ferrarotto R, Testa L, Riechelmann RP, et al. Combination of capecitabine and oxaliplatin is an effective treatment option for advanced neuroendocrine tumors. Rare Tumors. 2013;5:e35.

    PubMed  PubMed Central  Google Scholar 

  70. Apostolidis L, Jäger D, Winkler EC. Treatment outcomes for well differentiated grade 3 neuroendocrine tumors (NET G3). Ann Oncol. 2018;29(suppl 8):viii471–2 abstract 1317P.

    Google Scholar 

  71. Sorbye H, Kong G, Grozinsky-Glasberg S. PRRT in high-grade gastroenteropancreatic neuroendocrine neoplasms (WHO G3). Endocr Relat Cancer. 2020;27(3):R67–77. https://doi.org/10.1530/ERC-19-0400.

    Article  CAS  PubMed  Google Scholar 

  72. Thang SP, Lung MS, Kong G, et al. Peptide receptor radionuclide therapy (PRRT) in European Neuroendocrine Tumour Society (ENETS) grade 3 (G3) neuroendocrine neoplasia (NEN)-a single-institution retrospective analysis. Eur J Nucl Med Mol Imaging. 2018;45:262e 277.

    Google Scholar 

  73. Carlsen EA, Fazio N, Granberg D, et al. Peptide receptor radionuclide therapy in gastroenteropancreatic NEN G3: a multicenter cohort study. Endocr Relat Cancer. 2019;26:227e239.

    Google Scholar 

  74. Nicolini S, Severi S, Ianniello A, et al. Investigation of receptor radionuclide therapy with (177)Lu-DOTATATE in patients with GEP NEN and a high Ki-67 proliferation index. Eur J Nucl Med Mol Imaging. 2018;45:923e930.

    Google Scholar 

  75. Zhang J, Kulkarni HR, Singh A, et al. Peptide receptor radionuclide therapy in grade 3 neuroendocrine neoplasms: safety and survival analysis in 69 patients. J Nucl Med. 2019;60:377e385.

    Google Scholar 

  76. Zhang P, Li J, Li J, et al. Etoposide and cisplatin versus irinotecan and cisplatin as the first-line therapy for patients with advanced, poorly differentiated gastroenteropancreatic neuroendocrine carcinoma: a randomized phase 2 study. Cancer. 2020;126(suppl 9):2086–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lee SY, Choi YJ, Chang WJ, et al. The role of chemotherapy and/or octreotide in patients with metastatic gastroenteropancreatic and hepatobiliary neuroendocrine carcinoma. J Gastrointest Oncol. 2014;5:457–62.

    PubMed  PubMed Central  Google Scholar 

  78. Okuyama H, Ikeda M, Okusaka T, Furukawa M, Ohkawa S, Hosokawa A, et al. A phase II trial of everolimus in patients with advanced pancreatic neuroendocrine carcinoma refractory or intolerant to platinum-containing chemotherapy (NECTOR trial). Neuroendocrinology. 2020;110(11-12):988–93.

  79. Vijayvergia N, Dasari A, Deng M, Litwin S, Al-Toubah T, Alpaugh RK, et al. Pembrolizumab monotherapy in patients with previously treated metastatic high-grade neuroendocrine neoplasms: joint analysis of two prospective, non-randomised trials. Br J Cancer. 2020;122:1309–14.

  80. Yao JC, Strosberg J, Fazio N, et al. Activity & safety of spartalizumab (PDR001) in patients (pts) with advanced neuroendocrine tumors (NET) of pancreatic (Pan), gastrointestinal (GI), or thoracic (T) origin, & gastroenteropancreatic neuroendocrine carcinoma (GEP NEC) who have progressed on prior treatment (Tx). Ann Oncol. 2018;29(suppl 8):viii467–78 abstract 3442.

    Google Scholar 

  81. Patel SP, Othus M, Chae YK, et al. A phase II Basket trial of dual anti–CTLA-4 and anti–PD-1 blockade in rare tumors (DART SWOG 1609) in patients with nonpancreatic neuroendocrine tumors. Clin Cancer Res. 2020;26:2290–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Impact of Baseline Ki-67 index and Other Baseline Characteristics on Outcome in a Study of Sunitinib (SU) for the Treatment of Advanced, Progressive Pancreatic Neuroendocrine Tumor (NET). Available online: https://www.enets.org/impact-of-baseline-ki-67-index-and-other-baseline-characteristics-on-outcome-in a-study-of-sunitinib-su-for-the-treatment-of-advanced-progressive-pancreatic-neuroendocrine-tumornet.html.

  83. Gurusamy KS, Pamecha V, Sharma D, et al. Palliative cytoreductive surgery versus other palliative treatments in patients with unresectable liver metastases from gastro-entero-pancreatic neuroendocrine tumours. Cochrane Database Syst Rev. 2009;CD007118.

  84. Valle JW, Eatock M, Clueit B, et al. A systematic review of non-surgical treatments for pancreatic neuroendocrine tumours. Cancer Treat Rev. 2014;40:376–89.

    CAS  PubMed  Google Scholar 

  85. Riff BP, Yang YX, Soulen MC, et al. Peptide receptor radionuclide therapy-induced hepatotoxicity in patients with metastatic neuroendocrine tumors. Clin Nucl Med. 2015;40:845–50.

    PubMed  Google Scholar 

  86. Goncalves I, Burbury K, Michael M, et al. Characteristics and outcomes of therapy-related myeloid neoplasms after peptide receptor radionuclide/chemoradionuclide therapy (PRRT/PRCRT) for metastatic neuroendocrine neoplasia: a single-institution series. Eur J Nucl Med Mol Imaging. 2019;46:1902–10.

    CAS  PubMed  Google Scholar 

  87. Pavlakis N, Ransom DT, Wyld D, Sjoquist KM, Asher R, Gebski V, et al. Australasian Gastrointestinal Trials Group (AGITG) CONTROL NET Study: phase II study evaluating the activity of 177Lu-Octreotate peptide receptor radionuclide therapy (LuTate PRRT) and capecitabine, temozolomide (CAPTEM)—first results for pancreas and updated midgut neuroendocrine tumors (pNETs, mNETS). J Clin Oncol. 2020;38(15 suppl):4608–8. https://doi.org/10.1200/JCO.2020.38.15suppl.4608.

  88. Dromain C, Pavel ME, Ruszniewski P, Langley A, Massien C, Baudin E, et al. Tumor growth rate as a metric of progression, response, and prognosis in pancreatic and intestinal neuroendocrine tumors. BMC Cancer. 2019;19.

  89. • Scarpa A, Chang DK, Nones K, Corbo V, Patch AM, Bailey P, et al. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature. 2017;543(7643):65–71. https://doi.org/10.1038/nature21063This study showed the genomic profiling of pancreatic neuroendocrine tumors.

  90. Puccini A, Poorman K, Salem ME, Soldato D, Seeber A, Goldberg RM, et al. Comprehensive genomic profiling of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs). Clin Cancer Res. 2020;26(22):5943–51. https://doi.org/10.1158/1078-0432.CCR-20-1804.

  91. Malczewska A, Bodei L, Kidd M, Modlin IM. Blood mRNA measurement (NETest) for neuroendocrine tumor diagnosis of image-negative liver metastatic disease. J Clin Endocrinol Metab. 2019;104(3):867–72.

    PubMed  Google Scholar 

  92. Bodei L, Kidd MS, Singh A, van der Zwan WA, Severi S, Drozdov IA, et al. PRRT genomic signature in blood for prediction of 177Lu-octreotate efficacy. EJNMMI. 2018;45(7):1155–69.

    CAS  Google Scholar 

  93. Bodei L, Kidd M, Modlin IM, Severi S, Drozdov I, Nicolini S, et al. Measurement of circulating transcripts and gene cluster analysis predicts and defines therapeutic efficacy of peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumors. Eur J Nucl Med Mol Imaging. 2016;43(5):839–51.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simron Singh.

Ethics declarations

Conflict of Interest

Victor Rodriguez-Freixinos and Diego Ferone declare no conflict of interest. Alia Thawer has received research funding from Novartis (Melanoma Guideline) and AstraZeneca (local quality improvement work); has received speaker’s honoraria from Novartis (NET allied health education and melanoma education) and Pfizer (breast allied health education); and has received compensation from AbbVie for service as a consultant. Jaume Capdevila has received research funding from Novartis, Pfizer, Bayer, Eisai, Advanced Accelerator Applications, and AstraZeneca; and has received compensation from Novartis, Pfizer, Ipsen, Exelixis, Bayer, Eisai, Advanced Accelerator Applications, Eli Lilly, Sanofi, and Merck Serono for service as a consultant. Simron Singh has received research funding/fellowship support from Pfizer, and has received compensation from Ipsen and Novartis for service as a consultant.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuroendocrine Neoplasms

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez-Freixinos, V., Thawer, A., Capdevila, J. et al. Advanced Pancreatic Neuroendocrine Neoplasms: Which Systemic Treatment Should I Start With?. Curr Oncol Rep 23, 80 (2021). https://doi.org/10.1007/s11912-021-01071-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11912-021-01071-5

Keywords

Navigation