Skip to main content

Advertisement

Log in

Implications of Osteoblast-Osteoclast Interactions in the Management of Osteoporosis by Antiresorptive Agents Denosumab and Odanacatib

  • Epidemiology and Pathophysiology (PR Ebeling and EF Eriksen, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Antiresorptive agents, used in the treatment of osteoporosis, inhibit either osteoclast formation or function. However, with these approaches, osteoblast activity is also reduced because of the loss of osteoclast-derived coupling factors that serve to stimulate bone formation. This review discusses how osteoclast inhibition influences osteoblast function, comparing the actions of an inhibitor of osteoclast formation [anti-RANKL/Denosumab (DMAB)] with that of a specific inhibitor of osteoclastic cathepsin K activity [Odanacatib (ODN)]. Denosumab rapidly and profoundly, but reversibly, reduces bone formation. In contrast, preclinical studies and clinical trials of ODN showed that bone formation at some skeletal sites was preserved although resorption was reduced. This preservation of bone formation appears to be due to effects of coupling factors, secreted by osteoclasts and released from demineralized bone matrix. This indicates that bone resorptive activities of osteoclasts are separable from their coupling activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Frost HM. Dynamics of bone remodeling. In: Frost HM, editor. Bone Biodynamics. Boston: Little, Brown & Co; 1964. p. 315–33.

    Google Scholar 

  2. Sims NA, Martin TJ. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. BoneKEY Reports. 2014;3: Article 481.

  3. Martin TJ, Sims NA. Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med. 2005;11:76–81.

    Article  CAS  PubMed  Google Scholar 

  4. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999;397:315–23.

    Article  CAS  PubMed  Google Scholar 

  5. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999;13:2412–24.

    Article  CAS  PubMed  Google Scholar 

  6. Kartsogiannis V, Zhou H, Horwood NJ, Thomas RJ, Hards DK, Quinn JM, et al. Localization of RANKL (receptor activator of NF kappa B ligand) mRNA and protein in skeletal and extraskeletal tissues. Bone. 1999;25:525–34.

    Article  CAS  PubMed  Google Scholar 

  7. Horwood NJ, Elliott J, Martin TJ, Gillespie MT. Osteotropic agents regulate the expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal cells. Endocrinology. 1998;139:4743–6.

    Article  CAS  PubMed  Google Scholar 

  8. Thomas RJ, Guise TA, Yin JJ, Elliott J, Horwood NJ, Martin TJ, et al. Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology. 1999;140:4451–8.

    CAS  PubMed  Google Scholar 

  9. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93:165–76.

    Article  CAS  PubMed  Google Scholar 

  10. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337–42.

    Article  CAS  PubMed  Google Scholar 

  11. Russell RG, Croucher PI, Rogers MJ. Bisphosphonates: pharmacology, mechanisms of action and clinical uses. Osteoporos Int. 1999;9 Suppl 2:S66–80.

    Article  PubMed  Google Scholar 

  12. Moen MD, Keam SJ. Spotlight on denosumab in postmenopausal osteoporosis. BioDrugs Clin Immunotherapeutics Biopharm Gene ther. 2011;25:261–4.

    Article  CAS  Google Scholar 

  13. Howard GA, Bottemiller BL, Turner RT, Rader JI, Baylink DJ. Parathyroid hormone stimulates bone formation and resorption in organ culture: evidence for a coupling mechanism. Proc Natl Acad Sci U S A. 1981;78:3204–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nature Med. 2009;15:757–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Walker EC, McGregor NE, Poulton IJ, Pompolo S, Allan EH, Quinn JM, et al. Cardiotrophin-1 is an osteoclast-derived stimulus of bone formation required for normal bone remodeling. J Bone Miner Res. 2008;23:2025–32.

    Article  CAS  PubMed  Google Scholar 

  16. Pederson L, Ruan M, Westendorf JJ, Khosla S, Oursler MJ. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci U S A. 2008;105:20764–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Vukicevic S, Grgurevic L. BMP-6 and mesenchymal stem cell differentiation. Cytokine Growth Factor Rev. 2009;20:441–8.

    Article  CAS  PubMed  Google Scholar 

  18. Takeshita S, Fumoto T, Matsuoka K, Park KA, Aburatani H, Kato S, et al. Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation. J Clin Invest. 2013;123:3914–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Negishi-Koga T, Shinohara M, Komatsu N, Bito H, Kodama T, Friedel RH, et al. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nature Med. 2011;17:1473–80.

    Article  CAS  PubMed  Google Scholar 

  20. Dai XM, Zong XH, Akhter MP, Stanley ER. Osteoclast deficiency results in disorganized matrix, reduced mineralization, and abnormal osteoblast behavior in developing bone. J Bone Miner Res. 2004;19:1441–51.

    Article  CAS  PubMed  Google Scholar 

  21. Sakagami N, Amizuka N, Li M, Takeuchi K, Hoshino M, Nakamura M, et al. Reduced osteoblastic population and defective mineralization in osteopetrotic (op/op) mice. Micron. 2005;36:688–95.

    Article  CAS  PubMed  Google Scholar 

  22. Lian JB, Marks Jr SC. Osteopetrosis in the rat: coexistence of reductions in osteocalcin and bone resorption. Endocrinology. 1990;126:955–62.

    Article  CAS  PubMed  Google Scholar 

  23. Kostenuik PJ, Capparelli C, Morony S, Adamu S, Shimamoto G, Shen V, et al. OPG and PTH-(1-34) have additive effects on bone density and mechanical strength in osteopenic ovariectomized rats. Endocrinology. 2001;142:4295–304.

    CAS  PubMed  Google Scholar 

  24. Bateman TA, Dunstan CR, Ferguson VL, Lacey DL, Ayers RA, Simske SJ. Osteoprotegerin mitigates tail suspension-induced osteopenia. Bone. 2000;26:443–9.

    Article  CAS  PubMed  Google Scholar 

  25. Childs LM, Paschalis EP, Xing L, Dougall WC, Anderson D, Boskey AL, et al. In vivo RANK signaling blockade using the receptor activator of NF-kappaB:Fc effectively prevents and ameliorates wear debris-induced osteolysis via osteoclast depletion without inhibiting osteogenesis. J Bone Miner Res. 2002;17:192–9.

    Article  CAS  PubMed  Google Scholar 

  26. Kostenuik PJ, Nguyen HQ, McCabe J, Warmington KS, Kurahara C, Sun N, et al. Denosumab, a fully human monoclonal antibody to RANKL, inhibits bone resorption and increases BMD in knock-in mice that express chimeric (murine/human) RANKL. J Bone Miner Res. 2009;24:182–95.

    Article  CAS  PubMed  Google Scholar 

  27. Pierroz DD, Bonnet N, Baldock PA, Ominsky MS, Stolina M, Kostenuik PJ, et al. Are osteoclasts needed for the bone anabolic response to parathyroid hormone? A study of intermittent parathyroid hormone with denosumab or alendronate in knock-in mice expressing humanized RANKL. J Biol Chem. 2010;285:28164–73.

    Article  CAS  PubMed  Google Scholar 

  28. Ominsky MS, Kostenuik PJ, Cranmer P, Smith SY, Atkinson JE. The RANKL inhibitor OPG-Fc increases cortical and trabecular bone mass in young gonad-intact cynomolgus monkeys. Osteoporos Int. 2007;18:1073–82.

    Article  CAS  PubMed  Google Scholar 

  29. Ominsky MS, Stouch B, Schroeder J, Pyrah I, Stolina M, Smith SY, et al. Denosumab, a fully human RANKL antibody, reduced bone turnover markers and increased trabecular and cortical bone mass, density, and strength in ovariectomized cynomolgus monkeys. Bone. 2011;49:162–73. Evidence that anti-RANKL reduces bone formation in a preclinical model.

    Article  CAS  PubMed  Google Scholar 

  30. Kostenuik PJ, Smith SY, Jolette J, Schroeder J, Pyrah I, Ominsky MS. Decreased bone remodeling and porosity are associated with improved bone strength in ovariectomized cynomolgus monkeys treated with denosumab, a fully human RANKL antibody. Bone. 2011;49:151–61.

    Article  CAS  PubMed  Google Scholar 

  31. Furuya Y, Inagaki A, Khan M, Mori K, Penninger JM, Nakamura M, et al. Stimulation of bone formation in cortical bone of mice treated with a receptor activator of nuclear factor-kappaB ligand (RANKL)-binding peptide that possesses osteoclastogenesis inhibitory activity. J Biol Chem. 2013;288:5562–71.

    Article  CAS  PubMed  Google Scholar 

  32. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361:756–65.

    Article  CAS  PubMed  Google Scholar 

  33. McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH, et al. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med. 2006;354:821–31.

    Article  CAS  PubMed  Google Scholar 

  34. Reid IR, Miller PD, Brown JP, Kendler DL, Fahrleitner-Pammer A, Valter I, et al. Effects of denosumab on bone histomorphometry: the FREEDOM and STAND studies. J Bone Miner Res. 2010;25:2256–65. Histomorphometric evidence showing that denosumab profoundly reduces osteoblasts numbers and bone formation in both cortical and trabecular bone.

    Article  CAS  PubMed  Google Scholar 

  35. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med. 2007;356:1809–22.

    Article  CAS  PubMed  Google Scholar 

  36. Brown JP, Prince RL, Deal C, Recker RR, Kiel DP, de Gregorio LH, et al. Comparison of the effect of denosumab and alendronate on BMD and biochemical markers of bone turnover in postmenopausal women with low bone mass: a randomized, blinded, phase 3 trial. J Bone Miner Res. 2009;24:153–61.

    Article  CAS  PubMed  Google Scholar 

  37. Miller PD, Bolognese MA, Lewiecki EM, McClung MR, Ding B, Austin M, et al. Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone. 2008;43:222–9.

    Article  CAS  PubMed  Google Scholar 

  38. McClung MR, Lewiecki EM, Ho PR, Bolognese MA, Ding B, Geller ML, et al. Management trends after 8 years of denosumab: follow-up after a 1-year observational phase of the phase 2 extension study. Endocr Rev. 2013;34:OR10–6.

    Google Scholar 

  39. Tam CS, Heersche JN, Murray TM, Parsons JA. Parathyroid hormone stimulates the bone apposition rate independently of its resorptive action: differential effects of intermittent and continuous administration. Endocrinology. 1982;110:506–12.

    Article  CAS  PubMed  Google Scholar 

  40. Frolik CA, Black EC, Cain RL, Satterwhite JH, Brown-Augsburger PL, Sato M, et al. Anabolic and catabolic bone effects of human parathyroid hormone (1-34) are predicted by duration of hormone exposure. Bone. 2003;33:372–9.

    Article  CAS  PubMed  Google Scholar 

  41. Jiang Y, Zhao JJ, Mitlak BH, Wang O, Genant HK, Eriksen EF. Recombinant human parathyroid hormone (1-34) [teriparatide] improves both cortical and cancellous bone structure. J Bone Miner Res. 2003;18:1932–41.

    Article  CAS  PubMed  Google Scholar 

  42. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434–41.

    Article  CAS  PubMed  Google Scholar 

  43. Finkelstein JS, Hayes A, Hunzelman JL, Wyland JJ, Lee H, Neer RM. The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med. 2003;349:1216–26.

    Article  CAS  PubMed  Google Scholar 

  44. Black DM, Greenspan SL, Ensrud KE, Palermo L, McGowan JA, Lang TF, et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med. 2003;349:1207–15.

    Article  CAS  PubMed  Google Scholar 

  45. Tsai JN, Uihlein AV, Lee H, Kumbhani R, Siwila-Sackman E, McKay EA, et al. Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: the DATA study randomized trial. Lancet. 2013;382:50–6. Although limited to biochemical and BMD data, this is the first clinical study suggesting that combination therapy of PTH and RANKL inhibition may be of more benefit than using either agent alone.

  46. Karsdal MA, Martin TJ, Bollerslev J, Christiansen C, Henriksen K. Are nonresorbing osteoclasts sources of bone anabolic activity? J Bone Miner Res. 2007;22:487–94.

    Article  CAS  PubMed  Google Scholar 

  47. Karsdal MA, Neutzsky-Wulff AV, Dziegiel MH, Christiansen C, Henriksen K. Osteoclasts secrete non-bone derived signals that induce bone formation. Biochem Biophys Res Commun. 2008;366:483–8.

    Article  CAS  PubMed  Google Scholar 

  48. Reiser J, Adair B, Reinheckel T. Specialized roles for cysteine cathepsins in health and disease. J Clin Invest. 2010;120:3421–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Leung P, Pickarski M, Zhuo Y, Masarachia PJ, Duong LT. The effects of the cathepsin K inhibitor odanacatib on osteoclastic bone resorption and vesicular trafficking. Bone. 2011;49:623–35.

    Article  CAS  PubMed  Google Scholar 

  50. Yamaza T, Goto T, Kamiya T, Kobayashi Y, Sakai H, Tanaka T. Study of immunoelectron microscopic localization of cathepsin K in osteoclasts and other bone cells in the mouse femur. Bone. 1998;23:499–509.

    Article  CAS  PubMed  Google Scholar 

  51. Vaaraniemi J, Halleen JM, Kaarlonen K, Ylipahkala H, Alatalo SL, Andersson G, et al. Intracellular machinery for matrix degradation in bone-resorbing osteoclasts. J Bone Miner Res. 2004;19:1432–40.

    Article  CAS  PubMed  Google Scholar 

  52. Xia L, Kilb J, Wex H, Li Z, Lipyansky A, Breuil V, et al. Localization of rat cathepsin K in osteoclasts and resorption pits: inhibition of bone resorption and cathepsin K-activity by peptidyl vinyl sulfones. Biol Chem. 1999;380:679–87.

    Article  CAS  PubMed  Google Scholar 

  53. Garnero P, Borel O, Byrjalsen I, Ferreras M, Drake FH, McQueney MS, et al. The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J Biol Chem. 1998;273:32347–52.

    Article  CAS  PubMed  Google Scholar 

  54. Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996;273:1236–8.

    Article  CAS  PubMed  Google Scholar 

  55. Nishi Y, Atley L, Eyre DE, Edelson JG, Superti-Furga A, Yasuda T, et al. Determination of bone markers in pycnodysostosis: effects of cathepsin K deficiency on bone matrix degradation. J Bone Miner Res. 1999;14:1902–8.

    Article  CAS  PubMed  Google Scholar 

  56. Fratzl-Zelman N, Valenta A, Roschger P, Nader A, Gelb BD, Fratzl P, et al. Decreased bone turnover and deterioration of bone structure in two cases of pycnodysostosis. J Clin Endocrinol Metab. 2004;89:1538–47.

    Article  CAS  PubMed  Google Scholar 

  57. de Vernejoul MC, Kornak U. Heritable sclerosing bone disorders: presentation and new molecular mechanisms. Ann N Y Acad Sci. 2010;1192:269–77.

    Article  PubMed  Google Scholar 

  58. Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, et al. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci U S A. 1998;95:13453–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Gowen M, Lazner F, Dodds R, Kapadia R, Feild J, Tavaria M, et al. Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res. 1999;14:1654–63.

    Article  CAS  PubMed  Google Scholar 

  60. Pennypacker B, Shea M, Liu Q, Masarachia P, Saftig P, Rodan S, et al. Bone density, strength, and formation in adult cathepsin K (-/-) mice. Bone. 2009;44:199–207.

    Article  CAS  PubMed  Google Scholar 

  61. le Duong T. Therapeutic inhibition of cathepsin K—reducing bone resorption while maintaining bone formation. BoneKEY Rep. 2012;21:167.

    Google Scholar 

  62. Ng KW. Potential role of odanacatib in the treatment of osteoporosis. Clin Intervent Aging. 2012;7:235–47.

    Article  CAS  Google Scholar 

  63. Zerbini CA, McClung MR. Odanacatib in postmenopausal women with low bone mineral density: a review of current clinical evidence. Therapeut Advan Musculoskel Dis. 2013;5:199–209.

    Article  CAS  Google Scholar 

  64. Gauthier JY, Chauret N, Cromlish W, Desmarais S, le Duong T, Falgueyret JP, et al. The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg Medic Chem Lett. 2008;18:923–8.

    Article  CAS  Google Scholar 

  65. Pennypacker BL, le Duong T, Cusick TE, Masarachia PJ, Gentile MA, Gauthier JY, et al. Cathepsin K inhibitors prevent bone loss in estrogen-deficient rabbits. J Bone Miner Res. 2011;26:252–62.

    Article  CAS  PubMed  Google Scholar 

  66. Lark MW, Stroup GB, James IE, Dodds RA, Hwang SM, Blake SM, et al. A potent small molecule, nonpeptide inhibitor of cathepsin K (SB 331750) prevents bone matrix resorption in the ovariectomized rat. Bone. 2002;30:746–53.

    Article  CAS  PubMed  Google Scholar 

  67. Stroup GB, Lark MW, Veber DF, Bhattacharyya A, Blake S, Dare LC, et al. Potent and selective inhibition of human cathepsin K leads to inhibition of bone resorption in vivo in a nonhuman primate. J Bone Miner Res. 2001;16:1739–46.

    Article  CAS  PubMed  Google Scholar 

  68. Cusick T, Chen CM, Pennypacker BL, Pickarski M, Kimmel DB, Scott BB, et al. Odanacatib treatment increases hip bone mass and cortical thickness by preserving endocortical bone formation and stimulating periosteal bone formation in the ovariectomized adult rhesus monkey. J Bone Miner Res. 2012;27:524–37. Preclinical histomorphometric data indicating increased periosteal bone formation, and preserved bone formation at other sites, in monkeys treated with Odanacatib.

    Article  CAS  PubMed  Google Scholar 

  69. Masarachia PJ, Pennypacker BL, Pickarski M, Scott KR, Wesolowski GA, Smith SY, et al. Odanacatib reduces bone turnover and increases bone mass in the lumbar spine of skeletally mature ovariectomized rhesus monkeys. J Bone Miner Res. 2012;27:509–23.

    Article  CAS  PubMed  Google Scholar 

  70. Stroup GB, Kumar S, Jerome CP. Treatment with a potent cathepsin K inhibitor preserves cortical and trabecular bone mass in ovariectomized monkeys. Calcif Tissue Int. 2009;85:344–55.

    Article  CAS  PubMed  Google Scholar 

  71. Jerome C, Missbach M, Gamse R. Balicatib, a cathepsin K inhibitor, stimulates periosteal bone formation in monkeys. Osteoporos Int. 2012;23:339–49.

    Article  CAS  PubMed  Google Scholar 

  72. Williams DS, McCracken PJ, Purcell M, Pickarski M, Mathers PD, Savitz AT, et al. Effect of odanacatib on bone turnover markers, bone density and geometry of the spine and hip of ovariectomized monkeys: a head-to-head comparison with alendronate. Bone. 2013;56:489–96.

    Article  CAS  PubMed  Google Scholar 

  73. Fratzl-Zelman N, Roschger P, Fisher JE, le Duong T, Klaushofer K. Effects of Odanacatib on bone mineralization density distribution in thoracic spine and femora of ovariectomized adult rhesus monkeys: a quantitative backscattered electron imaging study. Calcif Tissue Int. 2013;92:261–9.

    Article  CAS  PubMed  Google Scholar 

  74. Yamane H, Sakai A, Mori T, Tanaka S, Moridera K, Nakamura T. The anabolic action of intermittent PTH in combination with cathepsin K inhibitor or alendronate differs depending on the remodeling status in bone in ovariectomized mice. Bone. 2009;44:1055–62.

    Article  CAS  PubMed  Google Scholar 

  75. Perry MJ, McDougall KE, Hou SC, Tobias JH. Impaired growth plate function in bmp-6 null mice. Bone. 2008;42:216–25.

    Article  CAS  PubMed  Google Scholar 

  76. Zmuda JM, Yerges LM, Kammerer CM, Cauley JA, Wang X, Nestlerode CS, et al. Association analysis of WNT10B with bone mass and structure among individuals of African ancestry. J Bone Miner Res. 2009;24:437–47.

    Article  CAS  PubMed  Google Scholar 

  77. Henriksen K, Flores C, Thomsen JS, Bruel AM, Thudium CS, Neutzsky-Wulff AV, et al. Dissociation of bone resorption and bone formation in adult mice with a nonfunctional V-ATPase in osteoclasts leads to increased bone strength. PLoS One. 2011;6:e27482.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Fuller K, Lawrence KM, Ross JL, Grabowska UB, Shiroo M, Samuelsson B, et al. Cathepsin K inhibitors prevent matrix-derived growth factor degradation by human osteoclasts. Bone. 2008;42:200–11.

    Article  CAS  PubMed  Google Scholar 

  79. Lotinun S, Kiviranta R, Matsubara T, Alzate JA, Neff L, Luth A, et al. Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation. J Clin Invest. 2013;123:666–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Jensen PR, Andersen TL, Pennypacker BL, Duong LT, Delaisse JM. The bone resorption inhibitors odanacatib and alendronate affect post-osteoclastic events differently in ovariectomized rabbits. Calcif Tissue Int. 2013;94:212–22.

    Google Scholar 

  81. Stoch SA, Zajic S, Stone J, Miller DL, Van Dyck K, Gutierrez MJ, et al. Effect of the cathepsin K inhibitor odanacatib on bone resorption biomarkers in healthy postmenopausal women: two double-blind, randomized, placebo-controlled phase I studies. Clin Pharmacol Therapeut. 2009;86:175–82.

    Article  CAS  Google Scholar 

  82. Bone HG, McClung MR, Roux C, Recker RR, Eisman JA, Verbruggen N, et al. Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two2-year study in postmenopausal women with low bone density. J Bone Miner Res. 2010;25:937–47.

    PubMed  Google Scholar 

  83. Brixen K, Chapurlat R, Cheung AM, Keaveny TM, Fuerst T, Engelke K, et al. Bone density, turnover, and estimated strength in postmenopausal women treated with odanacatib: a randomized trial. J Clin Endocrinol Metab. 2013;98:571–80. Clinical trial data indicating the benefit of Odanacatib treatment on BMD and biochemical markers of bone turnover. Additional studies showing whether fracture risk is reduced are required.

    Article  CAS  PubMed  Google Scholar 

  84. Eisman JA, Bone HG, Hosking DJ, McClung MR, Reid IR, Rizzoli R, et al. Odanacatib in the treatment of postmenopausal women with low bone mineral density: 3-year continued therapy and resolution of effect. J Bone Miner Res. 2011;26:242–51.

    Article  CAS  PubMed  Google Scholar 

  85. Neele SJ, Evertz R, De Valk-De RG, Roos JC, Netelenbos JC. Effect of 1 year of discontinuation of raloxifene or estrogen therapy on bone mineral density after 5 years of treatment in healthy postmenopausal women. Bone. 2002;30:599–603.

    Article  CAS  PubMed  Google Scholar 

  86. Grey A, Bolland MJ, Wattie D, Horne A, Gamble G, Reid IR. The antiresorptive effects of a single dose of zoledronate persist for 2 years: a randomized, placebo-controlled trial in osteopenic postmenopausal women. J Clin Endocrinol Metab. 2009;94:538–44.

    Article  CAS  PubMed  Google Scholar 

  87. Bone HG, Bolognese MA, Yuen CK, Kendler DL, Miller PD, Yang YC, et al. Effects of denosumab treatment and discontinuation on bone mineral density and bone turnover markers in postmenopausal women with low bone mass. J Clin Endocrinol Metab. 2011;96:972–80.

    Article  CAS  PubMed  Google Scholar 

  88. Langdahl B, Binkley N, Bone H, Gilchrist N, Resch H, Rodriguez Portales J, et al. Odanacatib in the treatment of postmenopausal women with low bone mineral density: 5 years of continued therapy in a phase 2 study. J Bone Miner Res. 2012;27:2251–8.

    Article  CAS  PubMed  Google Scholar 

  89. Khosla S, Burr D, Cauley J, Dempster DW, Ebeling PR, Felsenberg D, et al. Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2007;22:1479–91.

    Article  PubMed  Google Scholar 

  90. Shane E, Burr D, Ebeling PR, Abrahamsen B, Adler RA, Brown TD, et al. Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2010;25:2267–94.

    Article  PubMed  Google Scholar 

  91. Bauer DC. Discontinuation of odanacatib and other osteoporosis treatments: here today and gone tomorrow? J Bone Miner Res. 2011;26:239–41.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

N. A. Sims has received honoraria and reimbursement for travel from Amgen for educational presentations. K. W. Ng declares that he has no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie A. Sims.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sims, N.A., Ng, K.W. Implications of Osteoblast-Osteoclast Interactions in the Management of Osteoporosis by Antiresorptive Agents Denosumab and Odanacatib. Curr Osteoporos Rep 12, 98–106 (2014). https://doi.org/10.1007/s11914-014-0196-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-014-0196-1

Keywords

Navigation