Skip to main content

Advertisement

Log in

The Collagenopathies: Review of Clinical Phenotypes and Molecular Correlations

  • ORPHAN DISEASES (B MANGER, SECTION EDITOR)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Genetic defects of collagen formation (the collagenopathies) affect almost every organ system and tissue in the body. They can be grouped by clinical phenotype, which usually correlates with the tissue distribution of the affected collagen subtype. Many of these conditions present in childhood; however, milder phenotypes presenting in adulthood are increasingly recognized. Many are difficult to differentiate clinically. Precise diagnosis by means of genetic testing assists in providing prognosis information, family counseling, and individualized treatment. This review provides an overview of the current range of clinical presentations associated with collagen defects, and the molecular mechanisms important to understanding how the results of genetic testing affect medical care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Carter EM, Raggio CL. Genetic and orthopedic aspects of collagen disorders. Curr Opin Pediatr. 2009;21:46–54.

    Article  PubMed  Google Scholar 

  2. Shaw LM, Olsen BR. FACIT collagens: diverse molecular bridges in extracellular matrices. Trends Biochem Sci. 1991;16:191–4.

    Article  CAS  PubMed  Google Scholar 

  3. Van Dijk FS, Pals G, Van Rijn RR, Nikkels PGJ, Cobben JM. Classification of osteogenesis imperfecta revisited. Eur J Med Genet. 2010;53:1–5.

    Article  PubMed  Google Scholar 

  4. Rauch F, Glorieux FH. Osteogenesis imperfecta. Lancet. 2004;363(9418):1377–85.

    Article  CAS  PubMed  Google Scholar 

  5. Sykes B, Ogilvie D, Wordsworth P, et al. Consistent linkage of dominantly inherited osteogenesis imperfecta to the type I collagen loci: COL1A1 and COL1A2. Am J Hum Genet. 1990;46:293–307.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Sillence DO, Senn A, Danks DM. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet. 1979;16:101–16.

    Article  CAS  PubMed  Google Scholar 

  7. Körkkö J, Ala-Kokko L, De Paepe A, et al. Analysis of the COL1A1 and COL1A2 genes by PCR amplification and scanning by conformation-sensitive gel electrophoresis identifies only COL1A1 mutations in 15 patients with osteogenesis imperfecta type I: identification of common sequences of null-allele mutations. Am J Hum Genet. 1998;62:98–110.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Steiner RD, Adsit J, Basel D. COL1A1/2-related osteogenesis imperfecta. In: Pagon RA, Adam MP, Bird TD, et al. editors. GeneReviews™ [Internet]. Source Seattle (WA): University of Washington, Seattle; 1993–2013. 2005 Jan 28 [updated 2013 Feb 14]. <http://www.ncbi.nlm.nih.gov/books/NBK1295/>.

  9. Willing MC, Deschenes SP, Slayton RL, Roberts EJ. Premature chain termination is a unifying mechanism for COL1A1 null alleles in osteogenesis imperfecta type I cell strains. Am J Hum Genet. 1996;59(4):799–809.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Slayton RL, Deschenes SP, Willing MC. Nonsense mutations in the COL1A1 gene preferentially reduce nuclear levels of mRNA but not hnRNA in osteogenesis imperfecta type I cell strains. Matrix Biol J Int Soc Matrix Biol. 2000;19:1–9.

    Article  CAS  Google Scholar 

  11. Byers PH. Osteogenesis imperfecta: perspectives and opportunities. Curr Opin Pediatr. 2000;12:603–9.

    Article  CAS  PubMed  Google Scholar 

  12. Monti E, Mottes M, Fraschini P, et al. Current and emerging treatments for the management of osteogenesis imperfecta. Ther Clin Risk Manag. 2010;6:367–81.

    PubMed Central  PubMed  Google Scholar 

  13. Glorieux FH, Bishop NJ, Plotkin H, et al. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med. 1998;339:947–52.

    Article  CAS  PubMed  Google Scholar 

  14. Viora E, Sciarrone A, Bastonero S, et al. Osteogenesis imperfecta associated with increased nuchal translucency as a first ultrasound sign: report of another case. Ultrasound Obstet Gynecol. 2003;21(2):200–2.

    Article  CAS  PubMed  Google Scholar 

  15. van Dijk FS, Cobben JM, Kariminejad A, et al. Osteogenesis imperfecta: a review with clinical examples. Mol Syndromology. 2011;2(1):1–20.

    Google Scholar 

  16. • van Dijk FS, Byers PH, Dalgleish R, et al. EMQN best practice guidelines for the laboratory diagnosis of osteogenesis imperfecta. Eur J Hum Genet. 2012;20(1):11–9. A useful resource for understanding the diagnostic process when faced with a patient with suspected OI, including non-collagen-related OI.

    Article  PubMed  Google Scholar 

  17. Cubert R, Cheng EY, Mack S, Pepin MG, Byers PH. Osteogenesis imperfecta: mode of delivery and neonatal outcome. Obstet Gynecol. 2001;97(1):66–9.

    Article  CAS  PubMed  Google Scholar 

  18. McAllion SJ, Paterson CR. Musculo-skeletal problems associated with pregnancy in women with osteogenesis imperfecta. J Obstet Gynaecol. 2002;22(2):169–72.

    Article  PubMed  Google Scholar 

  19. Sharma A, George L, Erskin K. Osteogenesis imperfecta in pregnancy: two case reports and review of literature. Obstet Gynecol Surv. 2001;56(9):563–6.

    Article  CAS  PubMed  Google Scholar 

  20. Edge G, Okafor B, Fennelly ME, Ransford AO. An unusual manifestation of bleeding diathesis in a patient with osteogenesis imperfecta. Eur J Anaesthesiol. 1997;14(2):215–9.

    Article  CAS  PubMed  Google Scholar 

  21. Scott D, Stiris G. Osteogenesis imperfecta tarda; a study of 3 families with special reference to scar formation. Acta Med Scand. 1953;145(4):237–57.

    Article  CAS  PubMed  Google Scholar 

  22. Carlson JW, Harlass FE. Management of osteogenesis imperfecta in pregnancy. A case report. J Reprod Med. 1993;38(3):228–32.

    CAS  PubMed  Google Scholar 

  23. Vogel TM, Ratner EF, Thomas Jr RC, Chitkara U. Pregnancy complicated by severe osteogenesis imperfecta: a report of two cases. Anesth Analg. 2002;94(5):1315–7.

    Article  PubMed  Google Scholar 

  24. • Kannu P, Bateman J, Savarirayan R. Clinical phenotypes associated with type II collagen mutations. J Paediatr Child Health. 2012;48:E38–43. This review provides a full description of the extremely variable phenotypes associated with type II collagen mutations. It expands on the information presented here.

    Article  PubMed  Google Scholar 

  25. Saldino RM. Lethal short-limbed dwarfism: achondrogenesis and thanatophoric dwarfism. Am J Roentgenol Radium Ther Nucl Med. 1971;112:185–97.

    Article  CAS  PubMed  Google Scholar 

  26. Dertinger S, Söeder S, Bösch H, Aigner T. Matrix composition of cartilaginous anlagen in achondrogenesis type II (Langer-Saldino). Front Biosci J Virtual Libr. 2005;10:446–53.

    Article  CAS  Google Scholar 

  27. Faivre L, Le Merrer M, Douvier S, et al. Recurrence of achondrogenesis type II within the same family: evidence for germline mosaicism. Am J Med Genet A. 2004;126A:308–12.

    Article  PubMed  Google Scholar 

  28. Nishimura G, Nakashima E, Mabuchi A, et al. Identification of COL2A1 mutations in platyspondylic skeletal dysplasia, torrance type. J Med Genet. 2004;41:75–9.

    Article  CAS  PubMed  Google Scholar 

  29. Snead MP, Yates JR. Clinical and molecular genetics of stickler syndrome. J Med Genet. 1999;36:353–9.

    CAS  PubMed  Google Scholar 

  30. Sirko-Osadsa DA, Murray MA, Scott JA, et al. Stickler syndrome without eye involvement is caused by mutations in COL11A2, the gene encoding the alpha2(XI) chain of type XI collagen. J Pediatr. 1998;132:368–71.

    Article  CAS  PubMed  Google Scholar 

  31. • Robin NH, Moran RT, Warman M, Ala-Kokko L. Stickler syndrome. In: Pagon RA, Adam MP, Bird TD, et al. editors. GeneReviews™ [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2013. 2000 June 9 [updated 2011 Nov 3]. <http://www.ncbi.nlm.nih.gov/books/NBK1302/>. A complete and up-to-date review of diagnosis and management of Stickler syndrome.

  32. Roy DR. Spectrum of intra-articular findings of the acute and subacute painful hip with multiple epiphyseal dysplasia/spondyloepiphyseal dysplasia. J Pediatr Orthop B. 2011;20:284–6.

    Article  PubMed  Google Scholar 

  33. Gilbert-Barnes E, Langer Jr LO, Opitz JM, Laxova R, Sotelo-Arila C. Kniest dysplasia: radiologic, histopathological, and scanning electronmicroscopic findings. Am J Med Genet. 1996;63:34–45.

    Article  CAS  PubMed  Google Scholar 

  34. Wilkin DJ, Artz AS, South S, et al. Small deletions in the type II collagen triple helix produce Kniest dysplasia. Am J Med Genet. 1999;85:105–12.

    Article  CAS  PubMed  Google Scholar 

  35. Chan D, Jacenko O. Phenotypic and biochemical consequences of collagen X mutations in mice and humans. Matrix Biol. 1998;17:169–84.

    Article  CAS  PubMed  Google Scholar 

  36. Makitie O, Susic M, Ward L, Barclay C. Schmid type of metaphyseal chondrodysplasia and COL10A1 mutations—findings in 10 patients. Am J Med Genet. 2005;137(3):241–8.

    Article  Google Scholar 

  37. Miyamoto Y, Matsuda T, Kitoh H, et al. A recurrent mutation in type II collagen gene causes Legg–Calvé–Perthes disease in a Japanese family. Hum Genet. 2007;121:625–9.

    Article  CAS  PubMed  Google Scholar 

  38. Liu Y-F, Chen WM, Lin YF, et al. Type II collagen gene variants and inherited osteonecrosis of the femoral head. N Engl J Med. 2005;352:2294–301.

    Article  CAS  PubMed  Google Scholar 

  39. Kannu P, Bateman JF, Randle S, et al. Premature arthritis is a distinct type II collagen phenotype. Arthritis Rheum. 2010;62:1421–30.

    Article  CAS  PubMed  Google Scholar 

  40. Beighton P, De Paepe A, Steinmann B, Tsipouras P, Wenstrup RJ. Ehlers–Danlos syndromes: revised nosology, Villefranche, 1997. Ehlers–Danlos National Foundation (USA) and Ehlers–Danlos Support Group (UK). Am J Med Genet. 1998;77:31–7.

    Article  CAS  PubMed  Google Scholar 

  41. • Symoens S, Syx D, Malfait F, et al. Comprehensive molecular analysis demonstrates type V collagen mutations in over 90% of patients with classic EDS and allows to refine diagnostic criteria. Hum Mutat. 2012;33:1485–93. This paper established type V collagen mutations as the most important etiology of classic EDS. The prior estimate of cases of classic EDS caused by type V collagen mutations was approximately 50 %.

    Article  CAS  PubMed  Google Scholar 

  42. Nuytinck L, Freund M, Lagae L, et al. Classical Ehlers–Danlos syndrome caused by a mutation in type I collagen. Am J Hum Genet. 2000;66:1398–402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Giunta C, Chambaz C, Pedemonte M, Scapolan S, Steinmann B. The arthrochalasia type of Ehlers–Danlos syndrome (EDS VIIA and VIIB): the diagnostic value of collagen fibril ultrastructure. Am J Med Genet A. 2008;146A:1341–6.

    Article  CAS  PubMed  Google Scholar 

  44. Pepin M, Schwarze U, Superti-Furga A, Byers PH. Clinical and genetic features of Ehlers–Danlos syndrome type IV, the vascular type. N Engl J Med. 2000;342:673–80.

    Article  CAS  PubMed  Google Scholar 

  45. Leistritz DF, Pepin MG, Schwarze U, Byers PH. COL3A1 haploinsufficiency results in a variety of Ehlers–Danlos syndrome type IV with delayed onset of complications and longer life expectancy. Genet Med Off J Am Coll Med Genet. 2011;13:717–22.

    CAS  Google Scholar 

  46. Narcisi P, Richards AJ, Ferguson SD, Pope FM. A family with Ehlers–Danlos syndrome type III/articular hypermobility syndrome has a glycine 637 to serine substitution in type III collagen. Hum Mol Genet. 1994;3:1617–20.

    Article  CAS  PubMed  Google Scholar 

  47. Hausser I, Anton-Lamprecht I. Differential ultrastructural aberrations of collagen fibrils in Ehlers–Danlos syndrome types I–IV as a means of diagnostics and classification. Hum Genet. 1994;93:394–407.

    Article  CAS  PubMed  Google Scholar 

  48. Schwarze U, Hata R, McKusick VA, et al. Rare autosomal recessive cardiac valvular form of Ehlers–Danlos syndrome results from mutations in the COL1A2 gene that activate the nonsense-mediated RNA decay pathway. Am J Hum Genet. 2004;74:917–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. De Paepe A, Malfait F. The Ehlers–Danlos syndrome, a disorder with many faces. Clin Genet. 2012;82:1–11.

    Article  PubMed  Google Scholar 

  50. Bergqvist D, Björck M, Wanhainen A. Treatment of vascular Ehlers–Danlos syndrome: a systematic review. Ann Surg. 2013;258:257–61.

    Article  PubMed  Google Scholar 

  51. • Pepin MG, Byers PH. Ehlers–Danlos syndrome type IV. In: Pagon RA, Adam MP, Bird TD, et al. editors. GeneReviews™ [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2013. 1999 Sep 02 [updated 2011 May 03] <http://www.ncbi.nlm.nih.gov/books/NBK1494/>. A complete and up-to-date review of diagnosis and management of EDS vascular type.

  52. Ong K-T, Perdu J, De Backer J, et al. Effect of celiprolol on prevention of cardiovascular events in vascular Ehlers–Danlos syndrome: a prospective randomised, open, blinded-endpoints trial. Lancet. 2010;376:1476–84.

    Article  CAS  PubMed  Google Scholar 

  53. Rombaut L, Malfait F, Cools A, De Paepe A, Calders P. Musculoskeletal complaints, physical activity and health-related quality of life among patients with the Ehlers–Danlos syndrome hypermobility type. Disabil Rehabil. 2010;32:1339–45.

    Article  PubMed  Google Scholar 

  54. Lind J, Wallenburg HC. Pregnancy and the Ehlers–Danlos syndrome: a retrospective study in a Dutch population. Acta Obstet Gynecol Scand. 2002;81(4):293–300.

    Article  PubMed  Google Scholar 

  55. Hammond R, Oligbo N. Ehlers Danlos Syndrome Type IV and pregnancy. Arch Gynecol Obstet. 2012;285(1):51–4.

    Article  CAS  PubMed  Google Scholar 

  56. Castori M, Morlino S, Dordoni C, et al. Gynecologic and obstetric implications of the joint hypermobility syndrome (a.k.a. Ehlers–Danlos syndrome hypermobility type) in 82 Italian patients. Am J Med Genet A. 2012;158A(9):2176–82.

    Article  PubMed  Google Scholar 

  57. Pepin M, Schwarze U, Superti-Furga A, Byers PH. Clinical and genetic features of Ehlers–Danlos syndrome type IV, the vascular type. N Engl J Med. 2000;342(10):673–80.

    Article  CAS  PubMed  Google Scholar 

  58. Erez Y, Ezra Y, Rojansky N. Ehlers–Danlos Type IV in pregnancy. A case report and a literature review. Fetal Diagn Ther. 2008;23(1):7–9.

    Article  CAS  PubMed  Google Scholar 

  59. Harris IS. Management of pregnancy in patients with congenital heart disease. Prog Cardiovasc Dis. 2011;53(4):305–11.

    Article  PubMed Central  PubMed  Google Scholar 

  60. • Kuo DS, Labelle-Dumais C, Gould DB. COL4A1 and COL4A2 mutations and disease: insights into pathogenic mechanisms and potential therapeutic targets. Hum Mol Genet. 2012;21:R97–R110. An excellent in-depth review of current knowledge of phenotype and pathogenic mechanisms in COL4A1 and COL4A2-related disease.

    Article  CAS  PubMed  Google Scholar 

  61. Hudson BG, Reeders ST, Tryggvason K. Type IV: collagen: structure, gene organization, and role in human diseases. Molecular basis of Goodpasture and Alport syndromes and diffuse leiomyomatosis. J Biol Chem. 1993;268:26033–6.

    CAS  PubMed  Google Scholar 

  62. Sipilä L, Ruotsalainen H, Sormunen R, et al. Secretion and assembly of type IV and VI collagens depend on glycosylation of hydroxylysines. J Biol Chem. 2007;282:33381–8.

    Article  PubMed  Google Scholar 

  63. Vanacore RM, Friedman DB, Ham A-JL, Sundaramoorthy M, Hudson BG. Identification of S-hydroxylysyl-methionine as the covalent cross-link of the noncollagenous (NC1) hexamer of the alpha1alpha1alpha2 collagen IV network: a role for the post-translational modification of lysine 211 to hydroxylysine 211 in hexamer assembly. J Biol Chem. 2005;280:29300–10.

    Article  CAS  PubMed  Google Scholar 

  64. Aguglia U, Gambardella A, Breedveld GJ, et al. Suggestive evidence for linkage to chromosome 13qter for autosomal dominant type 1 porencephaly. Neurology. 2004;62:1613–5.

    Article  CAS  PubMed  Google Scholar 

  65. Yoneda Y, Haginoya K, Arai H, et al. De novo and inherited mutations in COL4A2, encoding the type IV collagen α2 chain cause porencephaly. Am J Hum Genet. 2012;90:86–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Van der Knaap MS, Smit LM, Barkhof F, et al. Neonatal porencephaly and adult stroke related to mutations in collagen IV A1. Ann Neurol. 2006;59:504–11.

    Article  PubMed  Google Scholar 

  67. Gould DB, Phalan FC, van Mil SE, et al. Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N Engl J Med. 2006;354:1489–96.

    Article  CAS  PubMed  Google Scholar 

  68. Plaisier E, Gribouval O, Alamowitch S, et al. COL4A1 mutations and hereditary angiopathy, nephropathy, aneurysms, and muscle cramps. N Engl J Med. 2007;357:2687–95.

    Article  CAS  PubMed  Google Scholar 

  69. Alamowitch S, Plaisier E, Favrole P, et al. Cerebrovascular disease related to COL4A1 mutations in HANAC syndrome. Neurology. 2009;73:1873–82.

    Article  CAS  PubMed  Google Scholar 

  70. Ninomiya Y, Kagawa M, Iyama K, et al. Differential expression of two basement membrane collagen genes, COL4A6 and COL4A5, demonstrated by immunofluorescence staining using peptide-specific monoclonal antibodies. J Cell Biol. 1995;130:1219–29.

    Article  CAS  PubMed  Google Scholar 

  71. Colville D, Savige J, Morfis M, et al. Ocular manifestations of autosomal recessive Alport syndrome. Ophthalmic Genet. 1997;18:119–28.

    Article  CAS  PubMed  Google Scholar 

  72. Kruegel J, Rubel D, Gross O. Alport syndrome—insights from basic and clinical research. Nat Rev Nephrol. 2013;9:170–8.

    Article  CAS  PubMed  Google Scholar 

  73. Bekheirnia MR, Reed B, Gregory MC, et al. Genotype-phenotype correlation in X-linked Alport syndrome. J Am Soc Nephrol. 2010;21:876–83.

    Article  CAS  PubMed  Google Scholar 

  74. Jais JP, Knebelmann B, Giatras I, et al. X-linked Alport syndrome: natural history and genotype–phenotype correlations in girls and women belonging to 195 families: a ‘European Community Alport Syndrome Concerted Action’ study. J Am Soc Nephrol. 2003;14:2603–10.

    Article  PubMed  Google Scholar 

  75. Longo I, Porcedda P, Mari F, et al. COL4A3/COL4A4 mutations: from familial hematuria to autosomal-dominant or recessive Alport syndrome. Kidney Int. 2002;61:1947–56.

    Article  CAS  PubMed  Google Scholar 

  76. Gross O, Licht C, Anders HJ, et al. Early angiotensin-converting enzyme inhibition in Alport syndrome delays renal failure and improves life expectancy. Kidney Int. 2012;81:494–501.

    Article  CAS  PubMed  Google Scholar 

  77. •• Temme J, Peters F, Lange K, et al. Incidence of renal failure and nephroprotection by RAAS inhibition in heterozygous carriers of X-chromosomal and autosomal recessive Alport mutations. Kidney Int. 2012;81:779–83. A large retrospective study demonstrating the nephroprotective effect of ACE inhibitors and angiotensin receptor blockers in patients with Alport syndrome.

    Article  CAS  PubMed  Google Scholar 

  78. Byrne MC, Budisavljevic MN, Fan Z, Self SE, Ploth DW. Renal transplant in patients with Alport’s syndrome. Am J Kidney Dis Off J Natl Kidney Found. 2002;39:769–75.

    Article  Google Scholar 

  79. • Crovetto F, Moroni G, Zaina B, et al. Pregnancy in women with Alport syndrome. Int Urol Nephrol. 2013;45(4):1223–7. An excellent resource for the management of Alport syndrome in pregnancy.

    Article  PubMed  Google Scholar 

  80. Podymow T, August P, Akbari A. Management of renal disease in pregnancy. Obstet Gynecol Clin North Am. 2010;37(2):195–210.

    Article  PubMed  Google Scholar 

  81. Furthmayr H, Wiedemann H, Timpl R, Odermatt E, Engel J. Electron-microscopical approach to a structural model of intima collagen. Biochem J. 1983;211:303–11.

    CAS  PubMed  Google Scholar 

  82. Colombatti A, Mucignat MT, Bonaldo P. Secretion and matrix assembly of recombinant type VI collagen. J Biol Chem. 1995;270:13105–11.

    Article  CAS  PubMed  Google Scholar 

  83. Schessl J et al. Predominant fiber atrophy and fiber type disproportion in early ullrich disease. Muscle Nerve. 2008;38:1184–91.

    Article  PubMed  Google Scholar 

  84. Jöbsis GJ, Boers JM, Barth PG, de Visser M. Bethlem myopathy: a slowly progressive congenital muscular dystrophy with contractures. Brain J Neurol. 1999;122(Pt 4):649–55.

    Article  Google Scholar 

  85. Merlini L, Martoni E, Grumati P, et al. Autosomal recessive myosclerosis myopathy is a collagen VI disorder. Neurology. 2008;71:1245–53.

    Article  CAS  PubMed  Google Scholar 

  86. Scacheri PC, Gillanders EM, Subramony SH, et al. Novel mutations in collagen VI genes: expansion of the Bethlem myopathy phenotype. Neurology. 2002;58:593–602.

    Article  CAS  PubMed  Google Scholar 

  87. Baker NL, Mörgelin M, Peat R. Dominant collagen VI mutations are a common cause of Ullrich congenital muscular dystrophy. Hum Mol Genet. 2005;14:279–93.

    Article  CAS  PubMed  Google Scholar 

  88. Okada M, Kawahara G, Noguchi S. Primary collagen VI deficiency is the second most common congenital muscular dystrophy in Japan. Neurology. 2007;69:1035–42.

    Article  CAS  PubMed  Google Scholar 

  89. Pace RA, Peat RA, Baker NL. Collagen VI glycine mutations: perturbed assembly and a spectrum of clinical severity. Ann Neurol. 2008;64:294–303.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Camacho Vanegas O, Bertini E, Zhang RZ, et al. Ullrich scleroatonic muscular dystrophy is caused by recessive mutations in collagen type VI. Proc Natl Acad Sci U S A. 2001;98:7516–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Demir E, Sabatelli P, Allamand V, et al. Mutations in COL6A3 cause severe and mild phenotypes of Ullrich congenital muscular dystrophy. Am J Hum Genet. 2002;70:1446–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Ryynänen J, Sollberg S, Parente MG, et al. Type VII collagen gene expression by cultured human cells and in fetal skin. Abundant mRNA and protein levels in epidermal keratinocytes. J Clin Invest. 1992;89:163–8.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Sakai LY, Keene DR, Morris NP, Burgeson RE. Type VII collagen is a major structural component of anchoring fibrils. J Cell Biol. 1986;103:1577–86.

    Article  CAS  PubMed  Google Scholar 

  94. Franzke C-W, Tasanen K, Schacke H, et al. Transmembrane collagen XVII, an epithelial adhesion protein, is shed from the cell surface by ADAMs. EMBO J. 2002;21:5026–35.

    Article  CAS  PubMed  Google Scholar 

  95. Fine JD, Eady RA, Bauer EA, et al. The classification of inherited epidermolysis bullosa (EB): report of the Third International Consensus Meeting on Diagnosis and Classification of EB. J Am Acad Dermatol. 2008;58(6):931–50.

    Article  PubMed  Google Scholar 

  96. Fine JD, Mellerio JE. Extracutaneous manifestations and complications of inherited epidermolysis bullosa: part I. Epithelial associated tissues. J Am Acad Dermatol. 2009;61(3):367–84.

    Article  PubMed  Google Scholar 

  97. Fine JD, Mellerio JE. Extracutaneous manifestations and complications of inherited epidermolysis bullosa: part II. Other organs. J Am Acad Dermatol. 2009;61(3):387–402.

    Article  PubMed  Google Scholar 

  98. Fine JD, Johnson LB, Weiner M, Li KP, Suchindran C. Epidermolysis bullosa and the risk of life-threatening cancers: the National EB Registry experience, 1986–2006. Am Acad Dermatol. 2009;60(2):203–11.

    Article  Google Scholar 

  99. Gupta R, Woodley DT, Chen M. Epidermolysis bullosa acquisita. Clin Dermatol. 2012;30(1):60–9.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Rebekah Jobling, Rohan D’Souza, Naomi Baker, Irene Lara-Corrales, Roberto Mendoza-Londono, Lucie Dupuis, Ravi Savarirayan, L. Ala-Kokko, and Peter Kannu declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kannu.

Additional information

This article is part of the Topical Collection on Orphan Diseases

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jobling, R., D’Souza, R., Baker, N. et al. The Collagenopathies: Review of Clinical Phenotypes and Molecular Correlations. Curr Rheumatol Rep 16, 394 (2014). https://doi.org/10.1007/s11926-013-0394-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-013-0394-3

Keywords

Navigation