Skip to main content

Advertisement

Log in

An Update on Autoinflammatory Diseases: Relopathies

  • Pediatric Rheumatology (S Ozen, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The nuclear factor κB (NF-κB) pathway is tightly regulated through multiple posttranslational mechanisms including ubiquitination. Mutations in these regulatory pathways can cause disease and are the focus of this review.

Recent Findings

The linear ubiquitin chain assembly complex (LUBAC) is a trimer made up of HOIL-1L, SHARPIN, and the catalytic subunit HOIP. Loss of function mutations in HOIL-1L and HOIP result in largely overlapping phenotypes, characterized by multi-organ autoinflammation, immunodeficiency, and amylopectinosis. Interestingly, patient fibroblasts exhibited diminished IL-1β- and TNF-induced NF-κB activation, yet monocytes were hyper-responsive to IL-1β, hinting at cell type or target specific roles of LUBAC-mediated ubiquitination. Ubiquitin-driven signaling is counterbalanced by deubiquitinase enzymes (DUBs), such as OTULIN and A20. Hypomorphic mutations in OTULIN result in elevated NF-κB signaling causing an autoinflammatory syndrome. Similarly, patients with high-penetrance heterozygous mutations in the gene encoding A20 (haploinsufficiency of A20 (HA20)) display excessive ubiquitination and increased activity of NF-κB and of NLRP3 inflammasome activation. HA20 patients present with Behçet-like characteristics or an autoimmune lymphoproliferative syndrome (ALPS)-like phenotype, indicating diverse protein functions.

Summary

This review summarizes recent discoveries in the field of NF-kB-related autoinflammatory diseases (relopathies) within the past 3 years and points to several questions that still remain unanswered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Delhase M, Hayakawa M, Chen Y, Karin M. Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science. 1999;284(5412):309–13.

    Article  PubMed  CAS  Google Scholar 

  2. Li ZW, Chu W, Hu Y, Delhase M, Deerinck T, Ellisman M, et al. The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. J Exp Med. 1999;189(11):1839–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol. 2009;27:693–733.

    Article  PubMed  CAS  Google Scholar 

  4. Hayden MS, Ghosh S. NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 2012;26(3):203–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Tokunaga F, Nishimasu H, Ishitani R, Goto E, Noguchi T, Mio K, et al. Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-kappaB regulation. EMBO J. 2012;31(19):3856–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Haas TL, Emmerich CH, Gerlach B, Schmukle AC, Cordier SM, Rieser E, et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol Cell. 2009;36(5):831–44.

    Article  PubMed  CAS  Google Scholar 

  7. Rahighi S, Ikeda F, Kawasaki M, Akutsu M, Suzuki N, Kato R, et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell. 2009;136(6):1098–109.

    Article  PubMed  CAS  Google Scholar 

  8. Tokunaga F, Sakata SI, Saeki Y, Satomi Y, Kirisako T, Kamei K, et al. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol. 2009;11(2):123–32.

    Article  PubMed  CAS  Google Scholar 

  9. Tokunaga F, Nakagawa T, Nakahara M, Saeki Y, Taniguchi M, Sakata SI, et al. SHARPIN is a component of the NF-kappaB-activating linear ubiquitin chain assembly complex. Nature. 2011;471(7340):633–6.

    Article  PubMed  CAS  Google Scholar 

  10. Sasaki Y, Sano S, Nakahara M, Murata S, Kometani K, Aiba Y, et al. Defective immune responses in mice lacking LUBAC-mediated linear ubiquitination in B cells. EMBO J. 2013;32(18):2463–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Sasaki K, Iwai K. Roles of linear ubiquitinylation, a crucial regulator of NF-kappaB and cell death, in the immune system. Immunol Rev. 2015;266(1):175–89.

    Article  PubMed  CAS  Google Scholar 

  12. Kirisako T, Kamei K, Murata S, Kato M, Fukumoto H, Kanie M, et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 2006;25(20):4877–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, Haas TL, et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature. 2011;471(7340):591–6.

    Article  PubMed  CAS  Google Scholar 

  14. • Emmerich CH, Ordureau A, Strickson S, Arthur JSC, Pedrioli PGA, Komander D, et al. Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proc Natl Acad Sci U S A. 2013;110(38):15247–52. Emmerich et al report the formation of K63/M1-linked hybrid ubiquitin chains as unique feature in IL-1-induced NF-κB signaling

    Article  PubMed  PubMed Central  Google Scholar 

  15. Smit JJ, van Dijk WJ, el Atmioui D, Merkx R, Ovaa H, Sixma TK. Target specificity of the E3 ligase LUBAC for ubiquitin and NEMO relies on different minimal requirements. J Biol Chem. 2013;288(44):31728–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Rittinger K, Ikeda F. Linear ubiquitin chains: enzymes, mechanisms and biology. Open Biol. 2017;7(4)

  17. Tokunaga F, Iwai K. Linear ubiquitination: a novel NF-kappaB regulatory mechanism for inflammatory and immune responses by the LUBAC ubiquitin ligase complex. Endocr J. 2012;59(8):641–52.

    Article  PubMed  CAS  Google Scholar 

  18. Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42(2):145–51.

    Article  PubMed  CAS  Google Scholar 

  19. Takaesu G, Ninomiya-Tsuji J, Kishida S, Li X, Stark GR, Matsumoto K. Interleukin-1 (IL-1) receptor-associated kinase leads to activation of TAK1 by inducing TAB2 translocation in the IL-1 signaling pathway. Mol Cell Biol. 2001;21(7):2475–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Verstrepen L, Bekaert T, Chau TL, Tavernier J, Chariot A, Beyaert R. TLR-4, IL-1R and TNF-R signaling to NF-kappaB: variations on a common theme. Cell Mol Life Sci. 2008;65(19):2964–78.

    Article  PubMed  CAS  Google Scholar 

  21. Fiil BK, Gyrd-Hansen M. Met1-linked ubiquitination in immune signalling. FEBS J. 2014;281(19):4337–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011;117(14):3720–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Cohen P, Strickson S. The role of hybrid ubiquitin chains in the MyD88 and other innate immune signalling pathways. Cell Death Differ. 2017;24(7):1153–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Takiuchi T, Nakagawa T, Tamiya H, Fujita H, Sasaki Y, Saeki Y, et al. Suppression of LUBAC-mediated linear ubiquitination by a specific interaction between LUBAC and the deubiquitinases CYLD and OTULIN. Genes Cells. 2014;19(3):254–72.

    Article  PubMed  CAS  Google Scholar 

  25. Schaeffer V, Akutsu M, Olma MH, Gomes LC, Kawasaki M, Dikic I. Binding of OTULIN to the PUB domain of HOIP controls NF-kappaB signaling. Mol Cell. 2014;54(3):349–61.

    Article  PubMed  CAS  Google Scholar 

  26. Keusekotten K, Elliott PR, Glockner L, Fiil BK, Damgaard RB, Kulathu Y, et al. OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell. 2013;153(6):1312–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Elliott PR, Nielsen SV, Marco-Casanova P, Fiil BK, Keusekotten K, Mailand N, et al. Molecular basis and regulation of OTULIN-LUBAC interaction. Mol Cell. 2014;54(3):335–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Draber P, Kupka S, Reichert M, Draberova H, Lafont E, de Miguel D, et al. LUBAC-recruited CYLD and A20 regulate gene activation and cell death by exerting opposing effects on linear ubiquitin in signaling complexes. Cell Rep. 2015;13(10):2258–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Niu J, Shi Y, Iwai K, Wu ZH. LUBAC regulates NF-kappaB activation upon genotoxic stress by promoting linear ubiquitination of NEMO. EMBO J. 2011;30(18):3741–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kupka S, de Miguel D, Draber P, Martino L, Surinova S, Rittinger K, et al. SPATA2-mediated binding of CYLD to HOIP enables CYLD recruitment to signaling complexes. Cell Rep. 2016;16(9):2271–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wertz IE, O'Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature. 2004;430(7000):694–9.

    Article  PubMed  CAS  Google Scholar 

  32. Verhelst K, Carpentier I, Kreike M, Meloni L, Verstrepen L, Kensche T, et al. A20 inhibits LUBAC-mediated NF-κB activation by binding linear polyubiquitin chains via its zinc finger 7. EMBO J. 2012;31(19):3845–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. • Boisson, B., et al., Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat Immunol, 2012. 13(12): p. 1178–1186. Boisson et al. identify dysregulation of the cellular ubiquitination machinery to be causative for an autoinflammatory disease.

  34. • Boisson, B., et al., Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J Exp Med, 2015. 212(6): p. 939–951.Boisson et al. emphasized their previous findings in patients with HOIL-1L deficiency (Boisson et al., 2012) with similar molecular and phenotypic characteristics in patients with loss of function in HOIP, also highlighting the cell type-specific effects.

  35. Rodgers MA, Bowman JW, Fujita H, Orazio N, Shi M, Liang Q, et al. The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation. J Exp Med. 2014;211(7):1333–47.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liang Y. SHARPIN negatively associates with TRAF2-mediated NFkappaB activation. PLoS One. 2011;6(7):e21696.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Nilsson J, Schoser B, Laforet P, Kalev O, Lindberg C, Romero NB, et al. Polyglucosan body myopathy caused by defective ubiquitin ligase RBCK1. Ann Neurol. 2013;74(6):914–9.

    Article  PubMed  CAS  Google Scholar 

  38. Wang K, Kim C, Bradfield J, Guo Y, Toskala E, Otieno FG, et al. Whole-genome DNA/RNA sequencing identifies truncating mutations in RBCK1 in a novel Mendelian disease with neuromuscular and cardiac involvement. Genome Med. 2013;5(7):67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Zhou Q, Yu X, Demirkaya E, Deuitch N, Stone D, Tsai WL, et al. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc Natl Acad Sci U S A. 2016;113(36):10127–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. • Damgaard, R.B., et al., The deubiquitinase OTULIN is an essential negative regulator of inflammation and autoimmunity. Cell, 2016. 166(5): p. 1215–1230.e20.Damgaard et al. show the essential role of OTULIN in preventing TNF-induced systemic inflammation. Different mouse models revealed varying cell-type-specific effects including spontaneous NF-κB activation following accumulation of M1-linked polyubiquitin in myeloid cells in contrast to LUBAC degradation in B and T cells.

  41. • Zhou, Q., et al., Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat Genet, 2016. 48(1): p. 67–73. Zhou et al. present the first study on an autoinflammatory disease caused by loss of function mutation in deubiquitinase A20.

  42. Duong BH, Onizawa M, Oses-Prieto JA, Advincula R, Burlingame A, Malynn BA, et al. A20 restricts ubiquitination of pro-interleukin-1beta protein complexes and suppresses NLRP3 inflammasome activity. Immunity. 2015;42(1):55–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Vande Walle L, et al. Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature. 2014;512(7512):69–73.

    Article  PubMed  CAS  Google Scholar 

  44. • Takagi M, et al. Haploinsufficiency of TNFAIP3 (A20) by germline mutation is involved in autoimmune lymphoproliferative syndrome. J Allergy Clin Immunol. 2017;139(6):1914–22. Takagi et al. identified heterozygous loss of function mutation in A20 to be causative for an autoimmune lymphoproliferative syndrome (ALPS) postulating multiple functions of A20

    Article  PubMed  CAS  Google Scholar 

  45. Duncan, C.J.A., et al.. Early-onset autoimmune disease due to a heterozygous loss-of-function mutation in TNFAIP3 (A20). Ann Rheum Dis. 2017.

Download references

Acknowledgements

The authors would like to thank the members of the Masters Lab, particularly Dr. Paul Baker and Dr. Fiona Moghaddas, as well as Daniel Simpson (Vince Lab) for discussion and advice on this review. S.L.M acknowledges funding from NHMRC grants (1144282, 1142354 and 1099262), The Sylvia and Charles Viertel Foundation, HHMI-Wellcome International Research Scholarship and Glaxosmithkline. SD acknowledges funding from NHMRC ECF: GNT1143412.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Annemarie Steiner or Seth L. Masters.

Ethics declarations

Conflict of Interest

Dr. Masters reports grants from NHMRC, grants from Viertel Foundation, grants from HHMI-Wellcome Trust, and grants from Glaxosmithkline, outside the submitted work.

Dr. Davidson reports grants from NHMRC, outside the submitted work.

Drs. Steiner and Harapas declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pediatric Rheumatology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steiner, A., Harapas, C.R., Masters, S.L. et al. An Update on Autoinflammatory Diseases: Relopathies. Curr Rheumatol Rep 20, 39 (2018). https://doi.org/10.1007/s11926-018-0749-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-018-0749-x

Keywords

Navigation