Skip to main content
Log in

Genotype and Phenotype in Multiple Sclerosis—Potential for Disease Course Prediction?

  • Multiple Sclerosis and Related Disorders (J Graves, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Purpose of review

This review will examine the current evidence that genetic and/or epigenetic variation may influence the multiple sclerosis (MS) clinical course, phenotype, and measures of MS severity including disability progression and relapse rate.

Recent findings

There is little evidence that MS clinical phenotype is under significant genetic control. There is increasing evidence that there may be genetic determinants of the rate of disability progression. However, studies that can analyse disability progression and take into account all the confounding variables such as treatment, clinical characteristics, and environmental factors are by necessity longitudinal, relatively small, and generally of short duration, and thus do not lend themselves to the assessment of hundreds of thousands of genetic variables obtained from GWAS. Despite this, there is recent evidence to support the association of genetic loci with relapse rate.

Summary

Recent progress suggests that genetic variations could be associated with disease severity, but not MS clinical phenotype, but these findings are not definitive and await replication. Pooling of study results, application of other genomic techniques including epigenomics, and analysis of biomarkers of progression could functionally validate putative severity markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• International Multiple Sclerosis Genetics C. The multiple sclerosis genomic map: role of peripheral immune cells and resident microglia in susceptibility. BioRxiv 2017; bioRxiv 143933; doi: https://doi.org/10.1101/143933. The prepublication of the largest MS GWAS to date that provides significant information on the heritability of MS.

  2. Lin R, Charlesworth J, van der Mei I, Taylor BV. The genetics of multiple sclerosis. Pract Neurol. 2012;12:279–88.

    Article  PubMed  Google Scholar 

  3. Sawcer S, Franklin RJ, Ban M. Multiple sclerosis genetics. Lancet Neurol. 2014;13:700–9.

    Article  PubMed  CAS  Google Scholar 

  4. Confavreux C, Vukusic S, Moreau T, Adeleine P. Relapses and progression of disability in multiple sclerosis. N Engl J Med. 2000;343:1430–8.

    Article  PubMed  CAS  Google Scholar 

  5. Signori A, Izquierdo G, Lugaresi A, et al. Long-term disability trajectories in primary progressive MS patients: a latent class growth analysis. Mult Scler 2017:1352458517703800.

  6. Eriksson M, Andersen O, Runmarker B. Long-term follow up of patients with clinically isolated syndromes, relapsing-remitting and secondary progressive multiple sclerosis. Mult Scler. 2003;9:260–74.

    Article  PubMed  Google Scholar 

  7. Chung KK, Barkhof F, Altmann DR, Miller DH, Chard D. Does ‘benign’ multiple sclerosis exist? A 30-year follow-up study of people presenting with clinically isolated syndrome. Mult Scler. 2017;23:8–84.

    Article  Google Scholar 

  8. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33:1444–52.

    Article  PubMed  CAS  Google Scholar 

  9. Jokubaitis VG, Spelman T, Kalincik T, et al. Predictors of disability worsening in clinically isolated syndrome. Ann Clin Transl Neurol. 2015;2:1–10.

    Article  Google Scholar 

  10. Jokubaitis VG, Spelman T, Kalincik T, Lorscheider J, Havrdova E, Horakova D, et al. Predictors of long-term disability accrual in relapse-onset multiple sclerosis. Ann Neurol. 2016;80:89–100.

    Article  PubMed  Google Scholar 

  11. Kalincik T, Vivek V, Jokubaitis V, Lechner-Scott J, Trojano M, Izquierdo G, et al. Sex as a determinant of relapse incidence and progressive course of multiple sclerosis. Brain. 2013;136:3609–17.

    Article  PubMed  Google Scholar 

  12. Tintore M, Rovira A, Rio J, et al. Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain. 2015;138:1863–74.

    Article  PubMed  Google Scholar 

  13. Kaunzner UW, Gauthier SA. MRI in the assessment and monitoring of multiple sclerosis: an update on best practice. Ther Adv Neurol Disord. 2017;10:247–61.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Disanto G, Barro C, Benkert P, Naegelin Y, Schädelin S, Giardiello A, et al. Serum neurofilament light: a biomarker of neuronal damage in multiple sclerosis. Ann Neurol. 2017;81:857–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Roxburgh RH, Seaman SR, Masterman T, et al. Multiple sclerosis severity score: using disability and disease duration to rate disease severity. Neurology. 2005;64:1144–51.

    Article  PubMed  CAS  Google Scholar 

  16. Amato MP, Portaccio E. Clinical outcome measures in multiple sclerosis. J Neurol Sci. 2007;259:118–22.

    Article  PubMed  Google Scholar 

  17. Lizak N, Lugaresi A, Alroughani R, Lechner-Scott J, Slee M, Havrdova E, et al. Highly active immunomodulatory therapy ameliorates accumulation of disability in moderately advanced and advanced multiple sclerosis. J Neurol Neurosurg Psychiatry. 2017;88:196–203.

    Article  PubMed  Google Scholar 

  18. Ramanujam R, Hedstrom AK, Manouchehrinia A, et al. Effect of smoking cessation on multiple sclerosis prognosis. JAMA Neurol. 2015;72:1117–23.

    Article  PubMed  Google Scholar 

  19. Simpson S Jr, der Mei IV, Taylor B. The role of vitamin D in multiple sclerosis: biology & biochemistry, epidemiology and potential roles in treatment. Med Chem. 2017;14:129–43.

    Google Scholar 

  20. Lucas RM, Ponsonby AL, Dear K, Valery PC, Pender MP, Taylor BV, et al. Sun exposure and vitamin D are independent risk factors for CNS demyelination. Neurology. 2011;76:540–8.

    Article  PubMed  CAS  Google Scholar 

  21. Tettey P, Simpson S, Taylor B, Ponsonby AL, Lucas RM, Dwyer T, et al. An adverse lipid profile and increased levels of adiposity significantly predict clinical course after a first demyelinating event. J Neurol Neurosurg Psychiatry. 2017;88:395–401.

    Article  PubMed  Google Scholar 

  22. • Jokubaitis VG, Butzkueven H. A genetic basis for multiple sclerosis severity: red herring or real? Mol Cell Probes. 2016;30:357–65. An overview of the genetic drivers of progression and phenotype prior to 2015.

    Article  PubMed  CAS  Google Scholar 

  23. Hensiek AE, Seaman SR, Barcellos LF, Oturai A, Eraksoi M, Cocco E, et al. Familial effects on the clinical course of multiple sclerosis. Neurology. 2007;68:376–83.

    Article  PubMed  CAS  Google Scholar 

  24. Van der Walt A, Stankovich J, Bahlo M, et al. Heterogeneity at the HLA-DRB1 allelic variation locus does not influence multiple sclerosis disease severity, brain atrophy or cognition. Mult Scler. 2011;17:344–52.

    Article  PubMed  CAS  Google Scholar 

  25. Masterman T, Ligers A, Olsson T, Andersson M, Olerup O, Hillert J. HLA-DR15 is associated with lower age at onset in multiple sclerosis. Ann Neurol. 2000;48:211–9.

    Article  PubMed  CAS  Google Scholar 

  26. • Pan G, Simpson S Jr, van der Mei I, et al. Role of genetic susceptibility variants in predicting clinical course in multiple sclerosis: a cohort study. J Neurol Neurosurg Psychiatry. 2016;87:1204–11. Describes the methodology of utilising GRS in assocating the risk of MS progression and relapse rate with known MS risk variants.

    Article  PubMed  Google Scholar 

  27. Graves JS, Barcellos LF, Shao X, Noble J, Mowry EM, Quach H, et al. Genetic predictors of relapse rate in pediatric MS. Mult Scler. 2016;22:1528–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Beecham AH, Patsopoulos NA, Xifara DK, et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet. 2013;45:1353–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. IMSGC. Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med. 2007;357:851–62.

    Article  Google Scholar 

  30. International Multiple Sclerosis Genetics C, Wellcome Trust Case Control C, Sawcer S, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476:214–9.

    Article  CAS  Google Scholar 

  31. Baranzini SE, Wang J, Gibson RA, Galwey N, Naegelin Y, Barkhof F, et al. Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis. Hum Mol Genet. 2009;18:767–78.

    Article  PubMed  CAS  Google Scholar 

  32. •• Zhou Y, Graves JS, Simpson S Jr, et al. Genetic variation in the gene LRP2 increases relapse risk in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2017;88:864–8. The first validated MS genetic loci associated with a metric of MS progression.

    Article  PubMed  Google Scholar 

  33. Hilven K, Vandebergh M, Smets I, Mallants K, Goris A, Dubois B. Genetic basis for relapse rate in multiple sclerosis: association with LRP2 genetic variation. Mult Scler 2018:1352458517749894.

  34. Graves JS, Barcellos LF, Simpson S, Belman A, Lin R, Taylor BV, et al. The multiple sclerosis risk allele within the AHI1 gene is associated with relapses in children and adults. Mult Scler Relat Disord. 2018;19:161–5.

    Article  PubMed  Google Scholar 

  35. •• Isobe N, Keshavan A, Gourraud PA, et al. Association of HLA genetic risk burden with disease phenotypes in multiple sclerosis. JAMA Neurol. 2016;73:795–802. A good description of the utility of genetic risk scores in genetic associations in MS.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lysandropoulos AP, Mavroudakis N, Pandolfo M, el Hafsi K, van Hecke W, Maertens A, et al. HLA genotype as a marker of multiple sclerosis prognosis: a pilot study. J Neurol Sci. 2017;375:348–54.

    Article  PubMed  CAS  Google Scholar 

  37. Balnyte R, Rastenyte D, Vaitkus A, Skrodeniene E, Vitkauskiene A, Uloziene I. Associations of HLA DRB1 alleles with IgG oligoclonal bands and their influence on multiple sclerosis course and disability status. Medicina (Kaunas). 2016;52:217–22.

    Article  Google Scholar 

  38. George MF, Briggs FB, Shao X, et al. Multiple sclerosis risk loci and disease severity in 7,125 individuals from 10 studies. Neurol Genet. 2016;2:e87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Esposito F, Guaschino C, Sorosina M, Clarelli F, Ferre’ L, Mascia E, et al. Impact of MS genetic loci on familial aggregation, clinical phenotype, and disease prediction. Neurol Neuroimmunol Neuroinflamm. 2015;2:e129.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hilven K, Patsopoulos NA, Dubois B, Goris A. Burden of risk variants correlates with phenotype of multiple sclerosis. Mult Scler. 2015;21:1670–80.

    Article  PubMed  CAS  Google Scholar 

  41. Sondergaard HB, Petersen ER, Magyari M, Sellebjerg F, Oturai AB. Genetic burden of MS risk variants distinguish patients from healthy individuals but are not associated with disease activity. Mult Scler Relat Disord. 2017;13:25–7.

    Article  PubMed  Google Scholar 

  42. • Wang Z, Sadovnick AD, Traboulsee AL, et al. Nuclear receptor NR1H3 in familial multiple sclerosis. Neuron. 2016;92:555. This paper and the subsequent discussions emphasize the problems associated with the search for rare variants associated with MS clinical course. See also ref. 40 and the associated commentary for this paper.

    Article  PubMed  CAS  Google Scholar 

  43. Sadovnick AD, Traboulsee AL, Zhao Y, Bernales CQ, Encarnacion M, Ross JP, et al. Genetic modifiers of multiple sclerosis progression, severity and onset. Clin Immunol. 2017;180:100–5.

    Article  PubMed  CAS  Google Scholar 

  44. Qureshi M, Hatem M, Alroughani R, Jacob SP, Al-Temaimi RA. PLXNA3 variant rs5945430 is associated with severe clinical course in male multiple sclerosis patients. NeuroMolecular Med. 2017;19:286–92.

    Article  PubMed  CAS  Google Scholar 

  45. Dardiotis E, Panayiotou E, Provatas A, et al. Gene variants of adhesion molecules act as modifiers of disease severity in MS. Neurol Neuroimmunol Neuroinflamm. 2017;4:e350.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Boiocchi C, Monti MC, Osera C, Mallucci G, Pistono C, Ferraro OE, et al. Heat shock protein 70-hom gene polymorphism and protein expression in multiple sclerosis. J Neuroimmunol. 2016;298:189–93.

    Article  PubMed  CAS  Google Scholar 

  47. Zhou Y, Simpson S Jr, Charlesworth JC, van der Mei I, Lucas RM, Ponsonby AL, et al. Variation within MBP gene predicts disease course in multiple sclerosis. Brain Behav. 2017;7:e00670.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pawlak-Adamska E, Nowak O, Karabon L, Pokryszko-Dragan A, Partyka A, Tomkiewicz A, et al. PD-1 gene polymorphic variation is linked with first symptom of disease and severity of relapsing-remitting form of MS. J Neuroimmunol. 2017;305:115–27.

    Article  PubMed  CAS  Google Scholar 

  49. Melief J, Koper JW, Endert E, Møller HJ, Hamann J, Uitdehaag BM, et al. Glucocorticoid receptor haplotypes conferring increased sensitivity (BclI and N363S) are associated with faster progression of multiple sclerosis. J Neuroimmunol. 2016;299:84–9.

    Article  PubMed  CAS  Google Scholar 

  50. International Multiple Sclerosis Genetics Consortium, Electronic address cbo. NR1H3 p.Arg415Gln is not associated to multiple sclerosis risk. Neuron. 2016;92:929.

    Google Scholar 

  51. Kroner A, Mehling M, Hemmer B, Rieckmann P, Toyka KV, Mäurer M, et al. A PD-1 polymorphism is associated with disease progression in multiple sclerosis. Ann Neurol. 2005;58:50–7.

    Article  PubMed  CAS  Google Scholar 

  52. Srinivasan S, Di Dario M, Russo A, et al. Dysregulation of MS risk genes and pathways at distinct stages of disease. Neurol Neuroimmunol Neuroinflamm. 2017;4:e337.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hellberg S, Eklund D, Gawel DR, Köpsén M, Zhang H, Nestor CE, et al. Dynamic response genes in CD4+ T cells reveal a network of interactive proteins that classifies disease activity in multiple sclerosis. Cell Rep. 2016;16:2928–39.

    Article  PubMed  CAS  Google Scholar 

  54. Kulakova OG, Kabilov MR, Danilova LV, Popova EV, Baturina OA, Tsareva EY, et al. Whole-genome DNA methylation analysis of peripheral blood mononuclear cells in multiple sclerosis patients with different disease courses. Acta Nat. 2016;8:103–10.

    CAS  Google Scholar 

  55. Healy BC, Ali EN, Guttmann CR, Chitnis T, Glanz BI, Buckle G, et al. Smoking and disease progression in multiple sclerosis. Arch Neurol. 2009;66:858–64.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pittas F, Ponsonby AL, van der Mei IA, et al. Smoking is associated with progressive disease course and increased progression in clinical disability in a prospective cohort of people with multiple sclerosis. J Neurol. 2009;256:577–85.

    Article  PubMed  Google Scholar 

  57. Marabita F, Almgren M, Sjoholm LK, et al. Smoking induces DNA methylation changes in multiple sclerosis patients with exposure-response relationship. Sci Rep. 2017;7:14589.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Zhou Y, Chen M, Simpson S Jr, et al. Common genetic variation within miR-146a predicts disease onset and relapse in multiple sclerosis. Neurol Sci. 2017;39:297–304.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce V. Taylor MBBS, PhD.

Ethics declarations

Conflict of Interest

Vilija G. Jokubaitis, Yuan Zhou, and Bruce V. Taylor declare no conflict of interest.

Helmut Butzkueven is on the Australian advisory board and Global Advisory boards for Novartis, Biogen, Merck, and Teva, and is a consultant for Novartis (Progressive MS consultancy) and Oxford Pharmagenesis (MS Brain Health Steering Committee). Dr. Butzkueven reports research grants from Biogen and Novartis and lecture fees paid to him from Biogen. Dr. Butzkueven has received payment for the development of educational presentations for Biogen (MS Atlas Meetings), Novartis (National MS workshop), and Merck (Global Registries workshop).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Multiple Sclerosis and Related Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jokubaitis, V.G., Zhou, Y., Butzkueven, H. et al. Genotype and Phenotype in Multiple Sclerosis—Potential for Disease Course Prediction?. Curr Treat Options Neurol 20, 18 (2018). https://doi.org/10.1007/s11940-018-0505-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-018-0505-6

Keywords

Navigation