Skip to main content
Log in

Evaluation of Encapsulation of Residual Oil from Pressed Sesame Seed Cake by Coacervation and Subsequent Spray- and Freeze-Drying Method

  • BRIEF REPORT
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Extracted oil from pressed sesame seed cake using supercritical CO2 under optimal extraction conditions of 220 bar extraction pressure and 50 οC extraction temperature for 5 h could be encapsulated by coacervation and subsequent spray drying and freeze drying methods. Wall materials of the microcapsules were fabricated from a mixture of gum arabic and two different types of protein (gelatin or whey protein isolate), at three different weight ratios of gum arabic to protein (2:1, 1:1, and 1:2) and a pH range of 2.5 to 5.0. Two different drying methods, spray and freeze drying, were performed. The results revealed that oil encapsulation using a ratio of 1:1 of whey protein isolate to gum arabic as wall material at pH of 3.5 with freeze drying provided more than 70% of encapsulation efficiency. As a result, the encapsulated oil powder contained a high content of sesamin (2.93 mg/g), sesamolin (2.83 mg/g), and tocopherols (0.28 mg/g). Furthermore, SYLOID® 244FP is a commercial wall material that could be used to encapsulate the extracted oil with a high encapsulation efficiency (79.93%), and the encapsulated oil powder contained a high content of sesamin (2.86 mg/g), sesamolin (2.71 mg/g), and tocopherols (0.26 mg/ g).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this manuscript.

References

  • Abdelwahed, W., Degobert, G., Stainmesse, S., & Fessi, H. (2006). Freeze-drying of nanoparticles: Formulation, process and storage considerations. Advanced Drug Delivery Reviews, 58(15), 1688–1713. https://doi.org/10.1016/j.addr.2006.09.017

    Article  CAS  PubMed  Google Scholar 

  • Abdul Mudalip, S. K., Khatiman, M. N., Hashim, N. A., Che Man, R., & Arshad, Z. I. M. (2021). A short review on encapsulation of bioactive compounds using different drying techniques. Materials Today: Proceedings, 42, 288–296. https://doi.org/10.1016/j.matpr.2021.01.543

    Article  CAS  Google Scholar 

  • Alvim, I. D., & Grosso, C. R. F. (2010). Microparticles obtained by complex coacervation: Influence of the type of reticulation and the drying process on the release of the core material. Ciencia y Tecnología De Alimentos, 30(4), 1069–1076. https://doi.org/10.1590/S0101-20612010000400036

    Article  Google Scholar 

  • AOAC. (2000). Official methods of analysis (17th ed.). The Association of Official Analytical Chemists, Gaithersburg, MD, USA.

  • Atgié, M. (2018). Composition and structure of gum Arabic in solution and at oil-water interfaces. PhD’s thesis, Institute National Polytechnique de Toulouse, Thailand.

  • Augustin, M. A., Sanguansri, L., & Bode, O. (2006). Maillard reaction products as encapsulants for fish oil powders. Journal of Food Science, 71(2), E25–E32. https://doi.org/10.1111/j.1365-2621.2006.tb08893.x

    Article  CAS  Google Scholar 

  • Aziz, S., Gill, J., Dutilleul, P., Neufeld, R., & Kermasha, S. (2014). Microencapsulation of krill oil using complex coacervation. Journal of Microencapsulation, 31(8), 774–784. https://doi.org/10.3109/02652048.2014.932028

    Article  CAS  PubMed  Google Scholar 

  • Bakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A., & Liang, L. (2016). Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Comprehensive Reviews in Food Science and Food Safety, 15(1), 143–182. https://doi.org/10.1111/1541-4337.12179

    Article  CAS  PubMed  Google Scholar 

  • Barrow, C., Wang, B., Adhikari, B., & Liu, H. (2013). Spray drying and encapsulation of omega-3 oils. In C. Jacobsen, N. S. Nielsen, A. F. Horn, & A. D. M. Sorensen (Eds.), Food enrichment with omega-3 fatty acid (pp. 194–219). Woodhead Publishing Limited.

    Chapter  Google Scholar 

  • Benković, M., & Bauman, I. (2011). Agglomeration of cocoa powder mixtures – influence of process conditions on physical properties of the agglomerates. Journal on Processing and Energy in Agriculture, 15(1), 46–49.

    Google Scholar 

  • Comunian, T. A., da Silva Anthero, A. G., Bezerra, E. O., Moraes, I. C. F., & Hubinger, M. D. (2020). Encapsulation of pomegranate seed oil by emulsification followed by spray drying: Evaluation of different biopolymers and their effect on particle properties. Food and Bioprocess Technology, 13, 53–66. https://doi.org/10.1007/s11947-019-02

    Article  CAS  Google Scholar 

  • Dai, H. H., Li, X. D., Wei, A. C., Wang, X. D., & Wang, D. Y. (2020). Characterization and oxidative stability of cold-pressed sesame oil microcapsules prepared by complex coacervation. Journal of Oleo Science, 69(7), 685–692. https://doi.org/10.5650/jos.ess19323

    Article  CAS  PubMed  Google Scholar 

  • Desobry, S. A., Netto, F. M., & Labuza, T. P. (1997). Comparison of spray-drying, drum-drying and freeze-drying for β-carotene encapsulation and preservation. Journal of Food Science, 62(6), 1158–1162.

    Article  CAS  Google Scholar 

  • Domian, E., Brynda-Kopytowska, A., Cenkier, J., & Swirydow, E. (2015). Selected properties of microencapsulated oil powders with commercial preparations of maize OSA starch and Trehalose. Journal of Food Engineering, 152, 72–84. https://doi.org/10.1016/j.jfoodeng.2014.09.034

    Article  CAS  Google Scholar 

  • Dong, D., Qi, Z., Hua, Y., Chen, Y., Kong, X., & Zhang, C. (2015). Microencapsulation of flaxseed oil by soya proteins-gum Arabic complex coacervation. International Journal of Food Science, 50(8), 1785–1791. https://doi.org/10.1111/ijfs.12812

    Article  CAS  Google Scholar 

  • Drusch, S., Serfert, Y., Van Den Heuvel, A., & Schwarz, K. (2006). Physicochemical characterization and oxidative stability of fish oil encapsulated in an amorphous matrix containing trehalose. Food Research International, 39(7), 807–815. https://doi.org/10.1016/j.foodres.2006.03.003

    Article  CAS  Google Scholar 

  • Eratte, D., Wang, B., Dowling, K., Barrow, C. J., & Adhikari, B. P. (2014). Complex coacervation with whey protein isolate and gum Arabic for the microencapsulation of omega-3 rich tuna oil. Food & Function, 5(11), 2743–2750. https://doi.org/10.1039/c4fo00296b

    Article  CAS  Google Scholar 

  • González-Martínez, D. A., Carrillo-Navas, H., Barrera-Díaz, C. E., Martínez-Vargas, S. L., Alvarez-Ramírez, J., & Pérez-Alonso, C. (2017). Characterization of a novel complex coacervate based on whey protein isolate-tamarind seed mucilage. Food Hydrocolloids, 72, 115–126. https://doi.org/10.1016/j.foodhyd.2017.05.037

    Article  CAS  Google Scholar 

  • Gomez-Estaca, J., Comunian, T. A., Montero, P., & Favaro-Trindade, C. S. (2018). Physico-chemical properties, stability, and potential food applications of shrimp lipid extract encapsulated by complex coacervation. Food and Bioprocess Technology, 11, 1596–1604. https://doi.org/10.1007/s11947-018-2116-3

    Article  CAS  Google Scholar 

  • Goyal, A., Sharma, V., Sihag, M. K., Tomar, S. K., Arora, S., & Sabikhi, L. (2015). Development and physico-chemical characterization of microencapsulated flaxseed oil powder: A functional ingredient for omega-3 fortification. Powder Technology, 286, 527–537.

    Article  CAS  Google Scholar 

  • Grace. (2018). SYLOID® FP silica multifunctional excipients for the nutraceutical and pharmaceutical industry. Grace.com. https://grace.com/products/syloid-silica/

  • Grace. (2020). Technical data sheet SYLOID® XDP silica solution for liquisolid formulations. Grace.com. https://grace.com/products/syloid-silica/

  • Jain, A., Thakur, D., Ghoshal, G., Katare, O. P., & Shivhare, U. S. (2015). Microencapsulation by complex coacervation using whey protein isolates and gum acacia: An approach to preserve the functionality and controlled release of β-carotene. Food and Bioprocess Technology, 8, 1635–1644. https://doi.org/10.1007/s11947-015-1521-0

    Article  CAS  Google Scholar 

  • Jun-xia, X., Hai-yan, Y., & Jian, Y. (2011). Microencapsulation of sweet orange oil by complex coacervation with soybean protein isolated/gum arabic. Food Chemistry, 125(4), 1267–1272. https://doi.org/10.1016/j.foodchem.2010.10.063

    Article  CAS  Google Scholar 

  • Kandasamy, S. & Naveen, R. (2022). A review on the encapsulation of bioactive components using spray-drying and freeze-drying techniques. Journal of Food Process Engineering, 45(8), e14059. https://doi.org/10.1111/jfpe.14059

  • Kim, K., Lee, J. & Lee, J. (2006). Determination of sesamin and sesamolin in sesame (Sesamum indicum L.) seeds using UV spectrophotometer and HPLC. Korean Journal of Crop Science, 51(1), 95–100.

  • Kralovec, J. A., Zhang, S., Zhang, W., & Barrow, C. J. (2012). A review of the progress in enzymatic concentration and microencapsulation of omega-3 rich oil from fish and microbial sources. Food Chemistry, 131(2), 639–644. https://doi.org/10.1016/j.foodchem.2011.08.085

    Article  CAS  Google Scholar 

  • Leclercq, S., Harlander, K. R., & Reineccius, G. A. (2008). Formation and characterization of microcapsules by complex coacervation with liquid or solid aroma cores. Flavour and Fragrance Journal, 24(1), 17–24. https://doi.org/10.1002/ffj.1911

    Article  CAS  Google Scholar 

  • Mahamaktudsanee, T. (2009). Microencapsulation of macadamia oil by spray drying. Master’s thesis, Chulalongkorn University, Thailand.

  • Minemoto, Y., Hakamata, K., Adachi, S., & Matsuno, R. (2002). Oxidation of linoleic acid encapsulated with gum arabic or maltodextrin by spray-drying. Journal of Microencapsulation, 19(2), 181–189. https://doi.org/10.1080/02652040110065468

    Article  CAS  PubMed  Google Scholar 

  • Najafi, M.N., Kadkhodaee, R. & Mortazavi, S.A. (2011). Effect of drying process and wall material on the properties of encapsulated cardamom oil. Food Biophysics, 6, 68−76. https://doi.org/10.1007/s11483-010-9176-x

  • Nayak, B., Dahmoune, F., Moussi, K., Remini, H., Dairi, S., Aoun, O., & Khodir, M. (2015). Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels. Food Chemistry, 187, 507–516. https://doi.org/10.1016/j.foodchem.2015.04.081

    Article  CAS  PubMed  Google Scholar 

  • Nesterenko, A., Alric, I., Silvestre, F., & Durrieu, V. (2013). Vegetable proteins in microencapsulation: A review of recent interventions and their effectiveness. Industrial Crops and Products, 42, 469–479. https://doi.org/10.1016/j.indcrop.2012.06.035

    Article  CAS  Google Scholar 

  • Nirunrungruang, N., & Loksuwan, J. (2018). Formation of coacervates between gelatin and polysaccharides (gum arabic, corn fiber gum, carboxymethyl cellulose) as a function of pH. Thai Science and Technology Journal, 26, 279–287.

    Google Scholar 

  • Ogrodowska, D., Tanska, M., Brandt, W. & Czaplicki, S. (2019). The influence of emulsion drying on the fatty acid composition, bioactive compounds content and oxidative stability of encapsulated bio-oils. CyTA - Journal of Food, 17(1), 949−959. https://doi.org/10.1080/19476337.2019.1676316

  • Ogrodowska, D., Tanska, M., Brandt, W. & Czaplicki, S. (2020). Impact of the encapsulation process by spray- and freeze-drying on the properties and composition of powders obtained from cold-pressed seed oils with various unsaturated fatty acids. Polish Journal of Food and Nutrition Sciences, 70(3), 241−252. https://doi.org/10.31883/pjfns/120314

  • Onsaard, E. & Onsaard, W. 2019. Microencapsulated vegetable oil powder. In F. Salaün (Ed.), Microencapsulation – processes, technologies and industrial applications. IntechOpen.

  • Özbek, Z.A. & Ergönül, P.G. (2017). A review on encapsulation of oils. Celal Bayar University Journal of Science, 13(2), 293−309. https://doi.org/10.18466/cbayarfbe.313358

  • Rojas-Moreno, S., Cárdenas-Bailón, F., Osorio-Revilla, G., Gallardo-Velázquez, T., & Proal-Nájera, J. (2018a). Effects of complex coacervation-spray drying and conventional spray drying on the quality of microencapsulated orange essential oil. Journal of Food Measurement and Characterization, 12, 650–660. https://doi.org/10.1007/s11694-017-9678-z

  • Rojas-Moreno, S., Osorio-Revilla, G., Gallardo-Velazquez, T., Cardenas-Bailon, F., & Meza-Marquez, G. (2018b). Effect of the cross-linking agent and drying method on encapsulation efficiency of orange essential oil by complex coacervation using whey protein isolate with different polysaccharides. Journal of Microencapsulation, 35(2), 165−180. https://doi.org/10.1080/02652048.2018.1449910

  • Silva, E.K., Azevedo, V.M., Cunha, R.L., Hubinger, M.D. & Meireles, M.A.A. (2016). Ultrasound-assisted encapsulation of annatto seed oil: Whey protein isolate versus modified starch. Food Hydrocolloids, 56, 71−83. 10.https://doi.org/10.1016/j.foodhyd.2015.12.006

  • Tavares, L., Barros, H. L. B., Vaghetti, J. C. P., & Noreña, C. P. Z. (2019). Microencapsulation of garlic extract by complex coacervation using whey protein isolate/chitosan and gum arabic/chitosan as wall materials: Influence of anionic biopolymers on the physicochemical and structural properties of microparticles. Food and Bioprocess Technology, 12, 2093–2106. https://doi.org/10.1007/s11947-019-02375-y

    Article  CAS  Google Scholar 

  • Tavares, L., & Noreña, C. P. Z. (2020). Encapsulation of ginger essential oil using complex coacervation method: Coacervate formation, rheological property, and physicochemical characterization. Food and Bioprocess Technology, 13, 1405–1420. https://doi.org/10.1007/s11947-020-02480-3

    Article  CAS  Google Scholar 

  • Tontul, I., & Topuz, A. (2013). Mixture design approach in wall material selection and evaluation of ultrasonic emulsification in flaxseed oil microencapsulation. Drying Technology, 31(12), 1362–1373. https://doi.org/10.1080/07373937.2013.795964

    Article  CAS  Google Scholar 

  • Wang, B., Adhikari, B., & Barrow, C. (2014). Optimization of the microencapsulation of tuna oil in gelatin-sodium hexametaphosphate using complex coacervation. Food Chemistry, 158, 358–365. https://doi.org/10.1016/j.foodchem.2014.02.135

    Article  CAS  PubMed  Google Scholar 

  • Wang, B., Akanbi, T. O., Agyei, D., Holland, B. J., & Barrow, C. J. (2018). Coacervation technique as an encapsulation and delivery tool for hydrophobic biofunctional compounds. In A. Grumezescu & A. M. Holban (Eds.), Role of materials science in food bioengineering (pp. 235–261). Academic Press.

    Google Scholar 

  • Xiao, Z., Liu, W., Zhu, G., Zhou, R., & Niu, Y. (2014). Production and characterization of multinuclear microcapsules encapsulating lavender oil by complex coacervation. Flavour and Fragrance Journal, 29(3), 166–172. https://doi.org/10.1002/ffj.3192

    Article  CAS  Google Scholar 

  • Yang, X., Gao, N., Hu, L., Li, J., & Sun, Y. (2015). Development and evaluation of novel microcapsules containing poppy-seed oil using complex coacervation. Journal of Food Engineering, 161, 87–93. https://doi.org/10.1016/j.jfoodeng.2015.03.027

    Article  CAS  Google Scholar 

  • Yousefi, M., Khorshidian, N., Mortazavian, A. M., & Khosravi-Darani, K. (2019). Preparation optimization and characterization of chitosan-tripolyphosphate microcapsules for the encapsulation of herbal galactagogue extract. International Journal of Biological Macromolecules, 140, 920–928. https://doi.org/10.1016/j.ijbiomac.2019.08.122

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to express their thanks for the financial support provided to the authors who receive a scholarship through the National Research Council of Thailand (NRCT), Thailand, under the Research Scholarships for Graduate Students 2020, Chiang Mai University, Thailand. Also, the authors would like to thank Chaiseri Co., Ltd. (Chiang Mai, Thailand) for providing the raw materials and suppling useful information.

Funding

This work was financed by the National Research Council of Thailand (NRCT), Thailand, under the Research Scholarships for Graduate Students 2020, Chiang Mai University, Thailand.

Author information

Authors and Affiliations

Authors

Contributions

Kritika Buranachokpaisan: methodology, investigation, formal analysis, data curation, and writing—original draft preparation; Rattana Muangrat: conceptualization, methodology, investigation, formal analysis, visualization, data curation, supervision, validation, and writing—review and editing.

Corresponding author

Correspondence to Rattana Muangrat.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buranachokpaisan, K., Muangrat, R. Evaluation of Encapsulation of Residual Oil from Pressed Sesame Seed Cake by Coacervation and Subsequent Spray- and Freeze-Drying Method. Food Bioprocess Technol 16, 1837–1850 (2023). https://doi.org/10.1007/s11947-023-03034-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03034-z

Keywords

Navigation