Skip to main content

Advertisement

Log in

Heat conduction-based methodology for nonlinear soft tissue deformation

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Modelling of interactions of soft tissues with surgical tools is a fundamental issue in interactive surgical simulation. This paper presents a new methodology for modelling of nonlinear characteristics of soft tissue deformation for interactive surgical simulation. The proposed methodology formulates soft tissue deformation as a process of energy propagation; the mechanical load applied to soft tissues to cause deformation is treated as the equivalent thermal energy according to the conservation law of energy and further distributed among masses of soft tissues in the manner of heat conduction. Heat conduction of mechanical load and non-rigid mechanics of motion are combined to conduct soft tissue deformation. To obtain real-time computational performance, cellular neural networks are developed for both propagation of mechanical load and non-rigid mechanical dynamics, leading to novel neural network models embedded with deformation mechanics and physical dynamics for interactive soft tissue simulation. Real-time force interaction is also achieved with an integration of a haptic device via force input, soft tissue deformation, and force feedback. Simulations and experimental results demonstrate the proposed methodology exhibits the typical mechanical behaviour of soft tissues and accepts nonlinear soft tissue deformation. It can also accommodate isotropic and homogeneous, anisotropic, and heterogeneous materials by a simple modification of thermal conductivity values of mass points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Miller, K.: Computational biomechanics for patient-specific applications. Ann. Biomed. Eng. 44, 1–2 (2016)

    Article  Google Scholar 

  2. Zhang, J., Zhong, Y., Gu, C.: Deformable models for surgical simulation: a survey. IEEE Rev. Biomed. Eng. (2018). https://doi.org/10.1109/RBME.2017.2773521

    Google Scholar 

  3. Courtecuisse, H., Allard, J., Kerfriden, P., Bordas, S.P.A., Cotin, S., Duriez, C.: Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med. Image Anal. 18, 394–410 (2014)

    Article  Google Scholar 

  4. Lim, Y.-J., De, S.: Real time simulation of nonlinear tissue response in virtual surgery using the point collocation-based method of finite spheres. Comput. Methods Appl. Mech. Eng. 196, 3011–3024 (2007)

    Article  MATH  Google Scholar 

  5. Kerdok, A.E., Cotin, S.M., Ottensmeyer, M.P., Galea, A.M., Howe, R.D., Dawson, S.L.: Truth cube: establishing physical standards for soft tissue simulation. Med. Image Anal. 7, 283–291 (2003)

    Article  Google Scholar 

  6. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. ACM SIGGRAPH Comput. Graph. 20, 151–160 (1986)

    Article  Google Scholar 

  7. Cover, S.A., Ezquerra, N.F., O’Brien, J.F., Rowe, R., Gadacz, T., Palm, E.: Interactively deformable models for surgery simulation. IEEE Comput. Graph. Appl. 13, 68–75 (1993)

    Article  Google Scholar 

  8. Duan, Y., Huang, W., Chang, H., Chen, W., Zhou, J., Teo, S.K., Su, Y., Chui, C.K., Chang, S.: Volume preserved mass–spring model with novel constraints for soft tissue deformation. IEEE J. Biomed. Health Inform. 20, 268–280 (2016)

    Article  Google Scholar 

  9. Hammer, P.E., Sacks, M.S., Del Nido J, P., Howe, R.D.: Mass-spring model for simulation of heart valve tissue mechanical behavior. Ann. Biomed. Eng. 39, 1668–1679 (2011)

    Article  Google Scholar 

  10. Nealen, A., Müller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based deformable models in computer graphics. Comput. Graph Forum 25, 809–836 (2006)

    Article  Google Scholar 

  11. Meier, U., Lopez, O., Monserrat, C., Juan, M.C., Alcaniz, M.: Real-time deformable models for surgery simulation: a survey. Comput. Methods Progr. Biomed. 77, 183–197 (2005)

    Article  Google Scholar 

  12. Delingette, H.: Toward realistic soft-tissue modeling in medical simulation. Proc. IEEE 86, 512–523 (1998)

    Article  Google Scholar 

  13. Gibson, S.F., Mirtich, B.: A survey of deformable modeling in computer graphics. Technical Report, Mitsubishi Electric Research Laboratories (1997)

  14. Frisken-Gibson, S.F.: 3D ChainMail: a fast algorithm for deforming volumetric objects. In: Proceedings of the Symposium on Interactive 3D graphics, pp. 149–154 (1997)

  15. Gibson, S., Fyock, C., Grimson, E., Kanade, T., Kikinis, R., Lauer, H., McKenzie, N., Mor, A., Nakajima, S., Ohkami, H., Osborne, R., Samosky, J., Sawada, A.: Volumetric object modeling for surgical simulation. Med. Image Anal. 2, 121–132 (1998)

    Article  Google Scholar 

  16. Zhang, J., Zhong, Y., Smith, J., Gu, C.: A new ChainMail approach for real-time soft tissue simulation. Bioengineered 7, 246–252 (2016)

    Article  Google Scholar 

  17. Zhang, J., Zhong, Y., Gu, C.: Ellipsoid bounding region-based ChainMail algorithm for soft tissue deformation in surgical simulation. Int. J. Interact. Des. Manuf. (IJIDeM) (2017). https://doi.org/10.1007/s12008-017-0437-5

    Google Scholar 

  18. Zhang, J., Zhong, Y., Smith, J., Gu, C.: ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation. Technol. Health Care 25, 231–239 (2017)

    Article  Google Scholar 

  19. Bro-Nielsen, M., Cotin, S.: Real-time volumetric deformable models for surgery simulation using finite elements and condensation. Comput. Graph Forum 15, 57–66 (1996)

    Article  Google Scholar 

  20. Cotin, S., Delingette, H., Ayache, N.: Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans. Vis. Comput. Graph. 5, 62–73 (1999)

    Article  MATH  Google Scholar 

  21. Cotin, S., Delingette, H., Ayache, N.: A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation. Vis. Comput. 16, 437–452 (2000)

    Article  MATH  Google Scholar 

  22. Miller, K., Joldes, G., Lance, D., Wittek, A.: Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Int. J. Numer. Methods Biomed. Eng. 23, 121–134 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Monserrat, C., Meier, U., Alcaniz, M., Chinesta, F., Juan, M.C.: A new approach for the real-time simulation of tissue deformations in surgery simulation. Comput. Methods Progr. Biomed. 64, 77–85 (2001)

    Article  Google Scholar 

  24. Zhu, B., Gu, L.: A hybrid deformable model for real-time surgical simulation. Comput. Med. Imaging Graph. 36, 356–365 (2012)

    Article  Google Scholar 

  25. Miller, K., Horton, A., Joldes, G.R., Wittek, A.: Beyond finite elements: a comprehensive, patient-specific neurosurgical simulation utilizing a meshless method. J. Biomech. 45, 2698–2701 (2012)

    Article  Google Scholar 

  26. Horton, A., Wittek, A., Joldes, G.R., Miller, K.: A meshless Total Lagrangian explicit dynamics algorithm for surgical simulation. Int. J. Numer. Methods Biomed. Eng. 26, 977–998 (2010)

    Article  MATH  Google Scholar 

  27. Aras, R., Shen, Y., Audette, M.: An analytic meshless enrichment function for handling discontinuities in interactive surgical simulation. Adv. Eng. Softw. 102, 40–48 (2016)

    Article  Google Scholar 

  28. Zou, Y., Liu, P.X.: A high-resolution model for soft tissue deformation based on point primitives. Comput. Methods Progr. Biomed. 148, 113–121 (2017)

    Article  Google Scholar 

  29. Palyanov, A., Khayrulin, S., Larson, S.D.: Application of smoothed particle hydrodynamics to modeling mechanisms of biological tissue. Adv. Eng. Softw. 98, 1–11 (2016)

    Article  Google Scholar 

  30. Rausch, M.K., Karniadakis, G.E., Humphrey, J.D.: Modeling soft tissue damage and failure using a combined particle/continuum approach. Biomech. Model. Mechanobiol. 16, 1–13 (2016)

    Google Scholar 

  31. De, S., Kim, J., Lim, Y.-J., Srinivasan, M.A.: The point collocation-based method of finite spheres (PCMFS) for real time surgery simulation. Comput. Struct. 83, 1515–1525 (2005)

    Article  Google Scholar 

  32. Payan, Y.: Soft Tissue Biomechanical Modeling for Computer Assisted Surgery. Springer, Berlin (2012)

    Book  Google Scholar 

  33. Picinbono, G., Delingette, H., Ayache, N.: Non-linear anisotropic elasticity for real-time surgery simulation. Graph. Models 65, 305–321 (2003)

    Article  MATH  Google Scholar 

  34. Xu, S., Liu, X., Zhang, H., Hu, L.: A nonlinear viscoelastic tensor-mass visual model for surgery simulation. IEEE T Instrum. Meas. 60, 14–20 (2011)

    Article  Google Scholar 

  35. Courtecuisse, H., Jung, H., Allard, J., Duriez, C., Lee, D.Y., Cotin, S.: GPU-based real-time soft tissue deformation with cutting and haptic feedback. Progr. Biophys. Mol. Biol. 103, 159–168 (2010)

    Article  Google Scholar 

  36. Plantefève, R., Peterlik, I., Haouchine, N., Cotin, S.: Patient-specific biomechanical modeling for guidance during minimally-invasive hepatic surgery. Ann. Biomed. Eng. 44, 139–153 (2016)

    Article  Google Scholar 

  37. Schwartz, J.-M., Denninger, M., Rancourt, D., Moisan, C., Laurendeau, D.: Modelling liver tissue properties using a non-linear visco-elastic model for surgery simulation. Med. Image Anal. 9, 103–112 (2005)

    Article  Google Scholar 

  38. Zhong, Y., Shirinzadeh, B., Smith, J., Gu, C.: Thermal–mechanical-based soft tissue deformation for surgery simulation. Adv. Robot. 24, 1719–1739 (2010)

    Article  Google Scholar 

  39. Holzapfel, G.A.: Nonlinear Solid Mechanics. Wiley Chichester, Chichester (2000)

    MATH  Google Scholar 

  40. Zhang, J., Zhong, Y., Gu, C.: Energy balance method for modelling of soft tissue deformation. Comput. Aided Des. 93, 15–25 (2017)

    Article  MathSciNet  Google Scholar 

  41. Sadd, M.H.: Elasticity: Theory, Applications, and Numerics. Academic Press, Cambridge (2009)

    Google Scholar 

  42. Olsrud, J., Friberg, B., Ahlgren, M., Persson, B.R.R.: Thermal conductivity of uterine tissue in vitro. Phys. Med. Biol. 43, 2397–2406 (1998)

    Article  Google Scholar 

  43. Khaled, A.R.A., Vafai, K.: The role of porous media in modeling flow and heat transfer in biological tissues. Int. J. Heat Mass Transf. 46, 4989–5003 (2003)

    Article  MATH  Google Scholar 

  44. Chua, L.O., Roska, T.: The CNN paradigm. IEEE T Circuits I 40, 147–156 (1993)

    Article  MATH  Google Scholar 

  45. Thiran, P., Setti, G., Hasler, M.: An approach to information propagation in 1-D cellular neural networks - part i: local diffusion. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 45, 777–789 (1998)

    Article  MATH  Google Scholar 

  46. Setti, G., Thiran, P., Serpico, C.: An approach to information propagation in 1-D cellular neural networks - part ii: global propagation. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 45, 790–811 (1998)

    Article  MATH  Google Scholar 

  47. Kozek, T., Chua, L.O., Roska, T., Wolf, D., Tetzlaff, R., Puffer, F., Lotz, K.: Simulating nonlinear waves and partial differential equations via CNN-part II: typical examples. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 42, 816–820 (1995)

    Article  Google Scholar 

  48. Szolgay, P., Vörös, G., Erőss, G.: On the applications of the cellular neural network paradigm in mechanical vibrating systems. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 40, 222–227 (1993)

    Article  MATH  Google Scholar 

  49. Roska, T., Chua, L.O., Wolf, D., Kozek, T., Tetzlaff, R., Puffer, F.: Simulating nonlinear waves and partial differential equations via CNN-part I: basic techniques. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 42, 807–815 (1995)

    Article  Google Scholar 

  50. Chua, L.O., Yang, L.: Cellular neural networks: theory. IEEE T Circuits Syst. 35, 1257–1272 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  51. Chua, L.O., Hasler, M., Moschytz, G.S., Neirynck, J.: Autonomous Cellular neural networks: a unified paradigm for pattern formation and active wave propagation. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 42, 559–577 (1995)

    Article  MathSciNet  Google Scholar 

  52. DiMaio, S.P., Salcudean, S.E.: Needle insertion modeling and simulation. IEEE Trans. Robot. Autom. 19, 864–875 (2003)

    Article  Google Scholar 

  53. Sparks, J.L., Vavalle, N.A., Kasting, K.E., Long, B., Tanaka, M.L., Sanger, P.A., Schnell, K., Conner-Kerr, T.A.: Use of silicone materials to simulate tissue biomechanics as related to deep tissue injury. Adv. Skin Wound Care 28, 59–68 (2015)

    Article  Google Scholar 

  54. Misra, J., Saha, I.: Artificial neural networks in hardware A survey of two decades of progress. Neurocomputing 74, 239–255 (2010)

    Article  Google Scholar 

  55. Ullah, Z., Augarde, C.E.: Finite deformation elasto-plastic modelling using an adaptive meshless method. Comput. Struct. 118, 39–52 (2013)

    Article  Google Scholar 

  56. Picinbono, G., Lombardo, J.C., Delingette, H., Ayache, N.: Improving realism of a surgery simulator: linear anisotropic elasticity, complex interactions and force extrapolation. J. Vis. Comput. Anim. 13, 147–167 (2002)

    Article  MATH  Google Scholar 

  57. Choi, K.-S., Sun, H., Heng, P.-A.: An efficient and scalable deformable model for virtual reality-based medical applications. Artif. Intell. Med. 32, 51–69 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Shin, J., Zhong, Y. et al. Heat conduction-based methodology for nonlinear soft tissue deformation. Int J Interact Des Manuf 13, 147–161 (2019). https://doi.org/10.1007/s12008-018-0486-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-018-0486-4

Keywords

Navigation