Skip to main content
Log in

Effect of interlock angle and bottom die flange diameter on clinching joint load bearing capacity in cross-tensile loading

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Clinching is a mechanical sheet metal joining technique, wherein the sheets are geometrically interlocked using a specially designed tool that does not require pre-hole or additional rivet material. In practical situations, the use of cross-tensile configuration is widespread, whose load-bearing capacity is found to be lower than that of lap shear configuration. Analytical models are easy to use and enable faster evaluation of joint strength. A novel analytical approach is proposed and validated experimentally. It is done on clinching joints made from Al 1100, because of low cost and good corrosion properties, sheets for various die flange diameters. Further, the experimental work carried out on various die flange diameters, varying from 0 to 12 mm at a step of 2 mm, showed that a different mode of failure could occur in which the interlock region fails by shear rather than button separation. The strength of joints in this proposed failure mode is consistent with the experimental data. The maximum strength of 2.15 kN was observed for a 6 mm diameter flange. Finite element simulations are performed to predict the occurrence of this mode of failure and its associated strength. Importantly, the critical interlock angle at which this mode of failure occurs is predicted. In the present study, this mode of failure is seen to occur when the angle of interlock exceeds 20°. The strength of the joints is higher during the button shear mode of failure when compared to the button separation mode. The critical angle thus commands the incurring mode of failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

X:

Plate thickness between die and punch

Y:

Interlock length

tU :

Undercut

α:

Interlock angle

tN :

Neck thickness

Rp :

Punch radius

RC :

Punch corner radius

Rf :

Die flange radius

Rd :

Die radius

H:

Die depth

Fb :

Button strength

Fse :

Button separation strength

µ:

Coefficient of friction

σ:

Yield strength

Fn :

Neck strength

Fsh :

Button shear strength

τT :

Top shear strength

τB :

Bottom sheet base metal material

CoF:

Coefficient of friction

Vx :

Axisymmetric strained x-direction

FD:

Die flange diameter

αc :

Critical interlock angle

SFTC:

Scientific forming technologies and corporation

Fsh (T):

Button shear strength at the top

Fsh (B):

Button shear strength at the bottom

References

  1. Mucha, J. Clinching technology in the automotive industry. Arch. Mot. (2017). https://doi.org/10.14669/AM.VOL76.ART4

  2. Madrid, J., Andersson, P., Söderberg, R., Wärmefjord, K., Kveselys, D., Lindkvist, L., Lööf, J.: Automated and interactive evaluation of welding producibility in an multidisciplinary design optimization environment for aircraft components. Int. J. Interact Design Manuf. 15(4), 463–479 (2021). https://doi.org/10.1007/s12008-021-00775-z

    Article  Google Scholar 

  3. Yurdakul, M., Balci, A., Ic, Y.T.: A knowledge-based material selection system for interactive pressure vessel design. Int. J. Interact Design Manuf. 14(1), 323–343 (2020). https://doi.org/10.1007/s12008-020-00652-1

    Article  Google Scholar 

  4. Azman, A.H., Hishamuddin, H., Daud, F., Baharom, N.A., Zan, M.A.M.: Interactive design and structural analysis of pit-opener DAG for airport oil tanks based on user-centered design and finite element analysis. Int. J. Interact Design Manuf. 15(4), 541–553 (2021). https://doi.org/10.1007/s12008-021-00780-2

    Article  Google Scholar 

  5. Miller, W.S., Zhuang, L., Bottema, J., Wittebrood, A., De Smet, P., Haszler, A., Vieregge, A.J.M.S.: Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng. A 280, 37–49 (2000). https://doi.org/10.1016/S0921-5093(99)00653-X

    Article  Google Scholar 

  6. Lambiase, F., Paoletti, A., Grossi, V., Genna, S.: Improving energy efficiency in friction assisted joining of metals and polymers. J. Mater. Process. Technol. 250, 379–389 (2017). https://doi.org/10.1016/j.jmatprotec.2017.08.005

    Article  Google Scholar 

  7. Lüder, S., Härtel, S., Binotsch, C., Awiszus, B.: Influence of the moisture content on flat-clinch connection of wood materials and aluminium. J. Mater. Process. Technol. 214, 2069–2074 (2014). https://doi.org/10.1016/j.jmatprotec.2014.01.010

    Article  Google Scholar 

  8. Chen, C., Li, Y., Zhang, H., Li, Y., Pan, Q., Han, X.: Thin-walled structures Investigation of a renovating process for failure clinched joint to join thin-walled structures. Thin-Walled Struct. 151, 106686 (2020). https://doi.org/10.1016/j.tws.2020.106686

    Article  Google Scholar 

  9. Series, IOPC; Science, M. FEM model and experimental measurement of clinched joint. In: Proceedings of the 4th International Conference Recent Trends in Structural Materials, Pilsen, Czech Republic, 9–11 November 2016

  10. Series, IOPC; Science, M. Investigation of clinch joints made of similar and dissimilar materials. In: Proceedings of the 11th Hungarian Conference on Materials Science, Balatonkenese, Hungary, 15–17 October 2017

  11. Hiller, M., Benkert, T., Vitzthum, S., Volk, W.: Influence of tool elasticity on process forces and joint properties during clinching with rotational tool movement influence of tool elasticity on process forces and joint properties during clinching with rotational tool movement. In: Proceedings of the 36th IDDRG Conference—Materials Modelling and Testing for Sheet Metal Forming Munich, Germany, 2–6 July 2017. https://doi.org/10.1088/1742-6596/896/1/012116

  12. Coppieters, S., Lava, P., Baes, S., Sol, H., van Houtte, P., Debruyne, D.: Analytical method to predict the pull-out strength of clinched connections. Thin Walled Struct. 52, 42–52 (2012). https://doi.org/10.1016/j.tws.2011.12.002

    Article  Google Scholar 

  13. Lee, C.J., Kim, J.Y., Lee, S.K., Ko, D.C., Kim, B.M.: Design of mechanical clinching tools for joining of aluminium alloy sheets. Mater. Des. 31, 1854–1861 (2010). https://doi.org/10.1016/j.matdes.2009.10.064

    Article  Google Scholar 

  14. Qiu, R., Shi, H., Zhang, K., Tu, Y., Iwamoto, C., Satonaka, S.: Interfacial characterization of joint between mild steel and aluminum alloy welded by resistance spot welding. Mater. Charact. 61, 684–688 (2010). https://doi.org/10.1016/j.matchar.2010.03.015

    Article  Google Scholar 

  15. Piccini, J.M., Svoboda, H.G.: Effect of the tool penetration depth in friction stir spot welding (FSSW) of dissimilar aluminum alloys. Procedia Mater. Sci. 8, 868–877 (2015). https://doi.org/10.1016/j.mspro.2015.04.147

    Article  Google Scholar 

  16. Piccini, J.M., Svoboda, H.G.: Tool geometry optimization in friction stir spot welding of Al-steel joints. J. Manuf. Process. 26, 142–154 (2017). https://doi.org/10.1016/j.jmapro.2017.02.004

    Article  Google Scholar 

  17. Rejek, M., Wróbel, N., Królczyk, J., Królczyk, G.: Designing and testing cold-formed rounded connections made on a prototype station. Materials 12, 1061 (2019). https://doi.org/10.3390/ma12071061

    Article  Google Scholar 

  18. Kaščák, Ľ., Spišák, E., Majerníková, J.: Clinching and clinch-riveting as a green alternative to resistance spot welding. In: Proceedings of the 2019 International Council on Technologies of Environmental Protection (ICTEP), Starý Smokovec, Slovakia, 23–25 October 2019, pp. 138–142. https://doi.org/10.1109/ICTEP48662.2019.8968973

  19. Kaščák, Ľ, Spišák, E., Majerníková, J., Kubík, R.: Clinching of dual-phase steels as an alternative to resistance spot welding. Mater. Sci. Forum 919, 68–77 (2018). https://doi.org/10.4028/www.scientific.net/MSF.919.68

    Article  Google Scholar 

  20. Varis, J.: Economics of clinched joint compared to riveted joint and example of applying calculations to a volume product. J. Mater. Process. Technol. 172, 130–138 (2006). https://doi.org/10.1016/j.jmatprotec.2005.09.009

    Article  Google Scholar 

  21. Mucha, J.: The analysis of lock forming mechanism in the clinching joint. Mater. Des. 32, 4943–4954 (2011). https://doi.org/10.1016/j.matdes.2011.05.045

    Article  Google Scholar 

  22. Briskham, P., Blundell, N., Han, L., Hewitt, R., Young, K., Boomer, D.: Comparison of self-pierce riveting, resistance spot welding and spot friction joining for aluminium automotive sheet. SAE Technical Paper Serious 2006–01–0774 (2006). https://doi.org/10.4271/2006-01-0774

  23. Abe, Y., Kishimoto, M., Kato, T., Mori, K.: Joining of hot-dip coated steel sheets by mechanical clinching. Int. J. Mater. Form. 2(Suppl. 1), 291–294 (2009). https://doi.org/10.1007/s12289-009-0446-4

    Article  Google Scholar 

  24. Israel, M., Mauermann, R., Schellnock, J.: Thick sheet clinching joining up to 20 mm total thickness. Adv. Shipp. Ocean Eng. 2, 1–10 (2013)

    Google Scholar 

  25. Li, X., Wang, X., Shen, Z., Ma, Y., Liu, H.: An experimental study on micro-shear clinching of metal foils by laser shock. Materials 12, 1422 (2019). https://doi.org/10.3390/ma12091422

    Article  Google Scholar 

  26. Chen, C., Zhao, S., Cui, M., Han, X., Fan, S., Ishida, T.: An experimental study on the compressing process for joining Al6061 sheets. Thin Walled Struct. 108, 56–63 (2016). https://doi.org/10.1016/j.tws.2016.08.007

    Article  Google Scholar 

  27. Alavinejad, S.A., Ghaderi, S.H.: Effect of tool geometry on the tensile strength of clinched joint and tool optimization using orthogonal experimental design method. MODARES Mech. Eng. 20, 1235–1243 (2020)

    Google Scholar 

  28. Abe, Y., Mori, K., Kato, T.: Joining of high strength steel and aluminium alloy sheets by mechanical clinching with dies for control of metal flow. J. Mater. Process. Technol. 212, 884–889 (2012). https://doi.org/10.1016/j.jmatprotec.2011.11.015

    Article  Google Scholar 

  29. Abe, Y., Kato, T., Mori, K.I., Nishino, S.: Mechanical clinching of ultra-high strength steel sheets and strength of joints. J. Mater. Process. Technol. 214, 2112–2118 (2014). https://doi.org/10.1016/j.jmatprotec.2014.03.003

    Article  Google Scholar 

  30. Lin, P.-C., Fang, J.-C., Lin, J.-W., Tran, X.V., Ching, Y.-C.: Preheated (heat-assisted) clinching process for Al/CFRP cross-tension specimens. Materials 13, 4170 (2020). https://doi.org/10.3390/ma13184170

    Article  Google Scholar 

  31. Huang, Z., Yanagimoto, J.: Dissimilar joining of aluminum alloy and stainless steel thin sheets by thermally assisted plastic deformation. J. Mater. Process. Technol. 225, 393–404 (2015). https://doi.org/10.1016/j.jmatprotec.2015.06.023

    Article  Google Scholar 

  32. Neugebauer, R., Kraus, C., Dietrich, S.: Advances in mechanical joining of magnesium. CIRP Ann. Manuf. Technol. 57, 283–286 (2008). https://doi.org/10.1016/j.cirp.2008.03.025

    Article  Google Scholar 

  33. Lambiase, F.: Clinch joining of heat-treatable aluminum AA6082-T6 alloy under warm conditions. J. Mater. Process. Technol. 225, 421–432 (2015). https://doi.org/10.1016/j.jmatprotec.2015.06.022

    Article  Google Scholar 

  34. Balawender, T., Sadowski, T., Golewski, P.: Numerical analysis and experiments of the clinch-bonded joint subjected to uniaxial tension. Comput. Mater. Sci. 64, 270–272 (2012). https://doi.org/10.1016/j.commatsci.2012.05.014

    Article  Google Scholar 

  35. Ge, Y., Xia, Y.: Mechanical characterization of a steel-aluminum clinched joint under impact loading. Thin Walled Struct. 151, 106759 (2020). https://doi.org/10.1016/j.tws.2020.106759

    Article  Google Scholar 

  36. Mucha, J.: The analysis of rectangular clinching joint in the shearing test. Eksploat. i Niezawodn. 51, 45–50 (2011)

    Google Scholar 

  37. Kaðèák, L., Spiðák, E., Kubík, R., Mucha, J.: Finite element calculation of clinching with rigid die of three steel sheets. Strength Mater. 49, 488–499 (2017). https://doi.org/10.1007/s11223-017-9892-2

    Article  Google Scholar 

  38. Shi, C., Yi, R., Chen, C., Zhao, S.: Forming mechanism of the repairing process on clinched joint. J. Manuf. Process. 50, 329–335 (2020). https://doi.org/10.1016/j.jmapro.2019.12.025

    Article  Google Scholar 

  39. Xing, B., He, X., Wang, Y., Yang, H., Deng, C.: Study of mechanical properties for copper alloy H62 sheets joined by self-piercing riveting and clinching. J. Mater. Process. Technol. 216, 28–36 (2015). https://doi.org/10.1016/j.jmatprotec.2014.08.030

    Article  Google Scholar 

  40. He, X., Zhang, Y., Xing, B., Gu, F., Ball, A.: Mechanical properties of extensible die clinched joints in titanium sheet materials. Mater. Des. 71, 26–35 (2015). https://doi.org/10.1016/j.matdes.2015.01.005

    Article  Google Scholar 

  41. Haque, R.: Quality of self-piercing riveting (SPR) joints from cross-sectional perspective: a review. Arch. Civ. Mech. Eng. 18(1), 83–93 (2018). https://doi.org/10.1016/j.acme.2017.06.003

    Article  MathSciNet  Google Scholar 

  42. Mucha, J., Kaščák, Ľ, Witkowski, W.: Research on the influence of the AW 5754 aluminum alloy state condition and sheet arrangements with AW 6082 aluminum alloy on the forming process and strength of the ClinchRivet joints. Materials 14(11), 2980 (2021). https://doi.org/10.3390/ma14112980

    Article  Google Scholar 

  43. Lambiase, F., Derazkola, H.A., Simchi, A.: Friction stir welding and friction spot stir welding processes of polymers—state of the art. Materials 13, 2291 (2020). https://doi.org/10.3390/ma13102291

    Article  Google Scholar 

  44. Lambiase, F., di Ilio, A.: Mechanical clinching of metal-polymer joints. J. Mater. Process. Technol. 215, 12–19 (2015). https://doi.org/10.1016/j.jmatprotec.2014.08.006

    Article  Google Scholar 

  45. Lambiase, F., Ko, D.C.: Two-steps clinching of aluminum and carbon fiber reinforced polymer sheets. Compos. Struct. 164, 180–188 (2017). https://doi.org/10.1016/j.compstruct.2016.12.072

    Article  Google Scholar 

  46. Lambiase, F.: Ko, DC Feasibility of mechanical clinching for joining aluminum AA6082-T6 and carbon fiber reinforced polymer sheets. Mater. Des. 107, 341–352 (2016). https://doi.org/10.1016/j.matdes.2016.06.061

    Article  Google Scholar 

  47. Abe, Y., Maeda, T., Yoshioka, D., Mori, K.: Mechanical clinching and self-pierce riveting of thin three sheets of 5000 series aluminium alloy and 980 MPa grade cold rolled ultra-high strength steel. Materials 13, 4741 (2020). https://doi.org/10.3390/ma13214741

    Article  Google Scholar 

  48. Mucha, J.: The failure mechanics analysis of the solid self-piercing riveting joints. Eng. Fail. Anal. 47, 77–88 (2015). https://doi.org/10.1016/j.engfailanal.2014.10.008

    Article  Google Scholar 

  49. Kaščák, L., Mucha, J., Spišák, E., Kubík, R.: Wear study of mechanical clinching dies during joining of advanced high-strength steel sheets. Strength Mater. 49, 726–737 (2017). https://doi.org/10.1007/s11223-017-9918-9

    Article  Google Scholar 

  50. Kaðèák, L., Spiðák, E., Kubik, R., Jacek, M.: Fem analysis of clinching tool load in a joint of dual-phase steels. Strength Mater. 48, 74–80 (2016). https://doi.org/10.1007/s11223-016-9795-7

    Article  Google Scholar 

  51. Wang, C.C., Kam, H.K., Cheong, W.C.: Effect of tool eccentricity on the joint strength in mechanical clinching process. Procedia Eng. 81, 2062–2067 (2014). https://doi.org/10.1016/j.proeng.2014.10.286

    Article  Google Scholar 

  52. Kumar, S., Edachery, V., Velpula, S., Govindaraju, A., Choudhury, S.K., Kailas, S.V.: Influence of surface roughness, friction coefficient, and wrap angle on clinching joint strength and its correlation with belt friction phenomenon. P. I. Mech. Eng. J-J Eng. (2021). 10.1177%2F13506501211025362

  53. Kumar, S., Avinash, G., Vimal, E.: Ductility effect on clinching joint strength in lap-shear configuration loading. Mater. Today Proc. 39, 1667–1672 (2020). https://doi.org/10.1016/j.matpr.2020.06.144

    Article  Google Scholar 

  54. Menezes, P.L., Kishore; Kailas, SV,: Effect of roughness parameter and grinding angle on coefficient of friction when sliding of Al–Mg alloy over EN8 steel. J. Tribol. 128, 697 (2006). https://doi.org/10.1115/1.2345401

    Article  Google Scholar 

  55. Zhang, P., Li, S.X., Zhang, Z.F.: General relationship between strength and hardness. Mater. Sci. Eng., A 529, 62–73 (2011). https://doi.org/10.1016/j.msea.2011.08.061

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Sehgal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Lakshmikanthan, A., Selvan, C.P. et al. Effect of interlock angle and bottom die flange diameter on clinching joint load bearing capacity in cross-tensile loading. Int J Interact Des Manuf 17, 2209–2220 (2023). https://doi.org/10.1007/s12008-022-00955-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-00955-5

Keywords

Navigation