Skip to main content
Log in

Abstract

Designers need knowledge about biological entities for inspiration and solving problems. Most designers face difficulties in extracting knowledge about biological information. A well compiled and developed knowledge representation of biological entity can help designers and organizations to understand complex biological entity and develop concepts based on that knowledge. At present, such knowledge frameworks are unavailable. For filling this gap, a 6W framework has been developed based on the hierarchical top-down approach. This standard framework has been proposed for capturing and representing information about natural entities. This framework extracts information using formal 6W questions about function, form, behavior, structure, location and nature’s intent hierarchy part wise for the natural entity. A case example (Lotus leaf) has been modeled and demonstrated using 6W framework. It has been concluded that 6W framework can capture knowledge and provide bioinspiration. A comparative SBF model has been discussed to understand the capabilities and limitations of the 6W framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alavi, M., Leidner, D.E.: Review: knowledge management and knowledge management systems: conceptual foundations and research issues. MIS Q. 25, 107 (2001). https://doi.org/10.2307/3250961

    Article  Google Scholar 

  2. Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks/Cole, Pacific Grove (2000)

    Google Scholar 

  3. Davis, R., Shrobe, H., Szolovits, P.: What is a knowledge representation? AI Mag. 14, 17–33 (1993). https://doi.org/10.1609/aimag.v14i1.1029

    Article  Google Scholar 

  4. Chandrasegaran, S.K., Ramani, K., Sriram, R.D., Horváth, I., Bernard, A., Harik, R.F., Gao, W.: The evolution, challenges, and future of knowledge representation in product design systems. Comput. Aided Des. 45, 204–228 (2013). https://doi.org/10.1016/j.cad.2012.08.006

    Article  Google Scholar 

  5. Gero, J.S.: Design prototypes: a knowledge representation schema for design. AI Mag. 11, 26–36 (1990)

    Google Scholar 

  6. Christophe, F., Bernard, A., Coatanéa, É.: RFBS: a model for knowledge representation of conceptual design. CIRP Ann. 59, 155–158 (2010). https://doi.org/10.1016/j.cirp.2010.03.105

    Article  Google Scholar 

  7. Farkash, A., Neuvirth, H., Goldschmidt, Y., Conti, C., Rizzi, F., Bianchi, S., Salvi, E., Cusi, D., Shabo, A.: A standard based approach for biomedical knowledge representation. In: Conference of the European Federation of Medical Informatics, pp. 689–693. IOS Press (2011)

  8. Schulz, S., Ludger, J.: Formal ontologies in biomedical knowledge representation. Yearb. Med. Inform. 8, 132–146 (2013)

    Google Scholar 

  9. Wang, W., De, S., Cassar, G., Moessner, K.: Knowledge representation in the internet of things: semantic modelling and its applications. Automatika 54, 388–400 (2013). https://doi.org/10.7305/automatika.54-4.414

    Article  Google Scholar 

  10. Zhan, P., Jayaram, U., Kim, O., Zhu, L.: Knowledge representation and ontology mapping methods for product data in engineering applications. J. Comput. Inf. Sci. Eng. 10, 021004 (2010). https://doi.org/10.1115/1.3330432

    Article  Google Scholar 

  11. Hartzband, M.: Enhancing knowledge representation in engineering databases. Computer 18, 39–48 (1985). https://doi.org/10.1109/MC.1985.1663003

    Article  Google Scholar 

  12. Dubois, E., Hagelstein, J., Lahou, E., Ponsaert, F., Rifaut, A.: A knowledge representation language for requirements engineering. Proc. IEEE. 74, 1431–1444 (1986). https://doi.org/10.1109/PROC.1986.13644

    Article  Google Scholar 

  13. Wongthongtham, P., Kasisopha, N., Chang, E., Dillon, T.: A software engineering ontology as software engineering knowledge representation. In: 2008 Third International Conference on Convergence and Hybrid Information Technology, pp. 668–675. IEEE, Busan, Korea (2008). https://doi.org/10.1109/ICCIT.2008.301

  14. Chirazi, J., Wanieck, K., Fayemi, P.-E., Zollfrank, C., Jacobs, S.: What do we learn from good practices of biologically inspired design in innovation? Appl. Sci. 9, 650 (2019). https://doi.org/10.3390/app9040650

    Article  Google Scholar 

  15. Fayemi, P.E., Wanieck, K., Zollfrank, C., Maranzana, N., Aoussat, A.: Biomimetics: process, tools and practice. Bioinspir. Biomim. 12, 011002 (2017). https://doi.org/10.1088/1748-3190/12/1/011002

    Article  Google Scholar 

  16. Santulli, C., Langella, C.: Introducing students to bio-inspiration and biomimetic design: a workshop experience. Int. J. Technol. Des. Educ. 21, 471–485 (2011). https://doi.org/10.1007/s10798-010-9132-6

    Article  Google Scholar 

  17. Martinez, A., Palumbo, S.: Anisotropic shear behavior of soil-structure interfaces: bio-inspiration from snake skin. In: IFCEE 2018, pp. 94–104. American Society of Civil Engineers, Orlando, Florida (2018). https://doi.org/10.1061/9780784481592.010

  18. Willocx, M., Ayali, A., Duflou, J.R.: Where and how to find bio-inspiration? CIRP J. Manuf. Sci. Technol. 31, 61–67 (2020). https://doi.org/10.1016/j.cirpj.2020.09.013

    Article  Google Scholar 

  19. Antezana, E., Kuiper, M., Mironov, V.: Biological knowledge management: the emerging role of the semantic web technologies. Brief. Bioinform. 10, 392–407 (2009). https://doi.org/10.1093/bib/bbp024

    Article  Google Scholar 

  20. Baldussu, A., Cascini, G., Rosa, F., Rovida, E.: Causal models for bio-inspired design: A comparison. In: DESIGN 2012, pp. 717–726. Croatia (2012)

  21. Minsky, M.: Framework for knowledge representation. Psychol. Comput. Vis. (1975)

  22. Vailaya, A., Bluvas, P., Kincaid, R., Kuchinsky, A., Creech, M., Adler, A.: An architecture for biological information extraction and representation. Bioinformatics 21, 430–438 (2004). https://doi.org/10.1093/bioinformatics/bti187

    Article  Google Scholar 

  23. Sharma, S., Sarkar, P.: Biomimicry: exploring research, challenges, gaps, and tools. In: Chakrabarti, A. (ed.) Research into design for a connected world, pp. 87–97. Springer, Singapore (2019)

    Chapter  Google Scholar 

  24. Schönborn, K.J., Bögeholz, S.: Knowledge transfer in biology and translation across external representations: experts’ views and challenges for learning. Int. J. Sci. Math. Educ. 7, 931–955 (2009). https://doi.org/10.1007/s10763-009-9153-3

    Article  Google Scholar 

  25. Wanieck, K., Fayemi, P.-E., Maranzana, N., Zollfrank, C., Jacobs, S.: Biomimetics and its tools. Bioinspired Biomimetic Nanobiomaterials 6, 53–66 (2017). https://doi.org/10.1680/jbibn.16.00010

    Article  Google Scholar 

  26. Tan, R., Liu, W., Cao, G., Shi, Y.: Creative design inspired by biological knowledge: technologies and methods. Front. Mech. Eng. 14, 1–14 (2019). https://doi.org/10.1007/s11465-018-0511-0

    Article  Google Scholar 

  27. Jia, L., Peng, Q., Tan, R., Zhu, X.: Analogical stimuli retrieval approach based on R-SBF ontology model. J. Eng. Des. 30, 599–624 (2019). https://doi.org/10.1080/09544828.2019.1643830

    Article  Google Scholar 

  28. Bard, J.B.L., Rhee, S.Y.: Ontologies in biology: design, applications and future challenges. Nat. Rev. Genet. 5, 213–222 (2004). https://doi.org/10.1038/nrg1295

    Article  Google Scholar 

  29. Passino, K.: Biomimicry for Optimization, Control, and Automation. Springer, London (2005)

    MATH  Google Scholar 

  30. Vattam, S., Wiltgen, B., Helms, M., Goel, A., Yen, J.: DANE: fostering creativity in and through biologically inspired design. In: In Proc. First International Conference on Design Creativity, pp. 115–122. Kobe (2010)

  31. Deldin, J.-M., Schuknecht, M.: The AskNature database: enabling solutions in biomimetic design. In: Goel, A.K., McAdams, D.A., Stone, R.B. (eds.) Biologically Inspired Design. pp. 17–27. Springer, London (2014). https://doi.org/10.1007/978-1-4471-5248-4_2

  32. Chakrabarti, A., Sarkar, P., Leelavathamma, B., Nataraju, B.S.: A functional representation for aiding biomimetic and artificial inspiration of new ideas. AIEDAM (2005). https://doi.org/10.1017/S0890060405050109

    Article  Google Scholar 

  33. Lenau, T.A., Keshwani, S., Chakrabarti, A., Ahmed-Kristensen, S.: Biocards and level of abstraction. In: Proceedings of the 20th International Conference on Engineering Design. pp. 1–11. Milan, Italy (2015)

  34. Vincent, J.F.V., Bogatyreva, O.A., Bogatyrev, N.R., Bowyer, A., Pahl, A.-K.: Biomimetics: its practice and theory. J. R. Soc. Interface. 3, 471–482 (2006). https://doi.org/10.1098/rsif.2006.0127

  35. Yim, S., Wilson, J.O., Rosen, D.: Development of an Ontology for Bio-Inspired Design using Description Logics. Presented at the International Conference on Product Lifecycle Management, July (2008)

  36. Noël, F., Roucoules, L., Teissandier, D.: Specification of product modelling concepts dedicated to information sharing in a collaborative design context. In: Bramley, A., Brissaud, D., Coutellier, D., McMahon, C. (eds.) Advances in Integrated Design and Manufacturing in Mechanical Engineering, pp. 135–146. Springer, Berlin/Heidelberg (2005). https://doi.org/10.1007/1-4020-3482-2_11

    Chapter  Google Scholar 

  37. Männistö, T., Peltonen, H., Martio, A., Sulonen, R.: Modelling generic product structures in STEP. Comput. Aided Des. 30, 1111–1118 (1998). https://doi.org/10.1016/S0010-4485(98)00067-0

    Article  Google Scholar 

  38. Moon, S.K., Kumara, S.R.T., Simpson, T.W.: Knowledge representation for product design using techspecs concept ontology. In: IRI -2005 IEEE International Conference on Information Reuse and Integration, Conf, 2005, pp. 241–246. IEEE, Las Vegas, NV (2005). https://doi.org/10.1109/IRI-05.2005.1506480

  39. Gero, J.S., Kannengiesser, U.: The situated function–behaviour–structure framework. Des. Stud. 25, 373–391 (2004). https://doi.org/10.1016/j.destud.2003.10.010

    Article  Google Scholar 

  40. Tinsley, A., Midha, P.A., Nagel, R.L., McAdams, D.A., Stone, R.B., Shu, L.H.: Exploring the use of functional models as a foundation for biomimetic conceptual design. In: 19th International conference on design theory and methodology; 1st International Conference on Micro and Nanosystems; and 9th International Conference on Advanced Vehicle Tire Technologies, Parts A and B. 3, 79–92 (2007). ASMEDC, Las Vegas, Nevada, USA. https://doi.org/10.1115/DETC2007-35604

  41. Chiu, I., Shu, L.H.: Biomimetic design through natural language analysis to facilitate cross-domain information retrieval. AIEDAM. 21, 45–59 (2007). https://doi.org/10.1017/S0890060407070138

  42. Srinivasan, V., Chakrabarti, A.: An Empirical evaluation of novelty-SAPPhIRE relationship. In: 14th Design for Manufacturing and the Life Cycle Conference; 6th Symposium on International Design and Design Education; 21st International Conference on Design Theory and Methodology, Parts A and B. 8, 985–994. ASMEDC, San Diego, California, USA (2009). https://doi.org/10.1115/DETC2009-86668

  43. Helms, M., Vattam, S., Goel, A.K., Yen, J.: Enhanced understand of biological systems using structure-behavior-function models. In: 2011 IEEE 11th International Conference on Advanced Learning Technologies. pp. 239–243. IEEE, Athens, GA (2011). https://doi.org/10.1109/ICALT.2011.76

  44. Nagel, J.K., Pittman, P., Pidaparti, R., Rose, C., Beverly, C.: Teaching bioinspired design using C–K theory. Bioinspired, Biomimetic and Nanobiomaterials. 6, 77–86 (2017). https://doi.org/10.1680/jbibn.16.00013https://doi.org/10.1680/jbibn.16.00013

  45. Labrousse, M., Bernard, A.: FBS-PPRE, an Enterprise Knowledge Lifecycle Model. In: Bernard, A., Tichkiewitch, S. (eds.) Methods and Tools for Effective Knowledge Life-Cycle-Management, pp. 285–305. Springer, Berlin, Heidelberg (2008)

    Chapter  Google Scholar 

  46. Umeda, Y., Tomiyama, T.: FBS modeling: modeling scheme of function for conceptual design. In: 9th int. Workshop on Qualitative Reasoning, pp. 271–278 (1995).

  47. Yoshioka, M., Umeda, Y., Takeda, H., Shimomura, Y., Nomaguchi, Y., Tomiyama, T.: Physical concept ontology for the knowledge intensive engineering framework. Adv. Eng. Inform. 18, 95–113 (2004). https://doi.org/10.1016/j.aei.2004.09.004

    Article  Google Scholar 

  48. Czauderna, T., Schreiber, F.: Information visualization for biological data. In: Keith, J.M. (ed.) Bioinformatics, pp. 403–415. Springer, New York, NY (2017). https://doi.org/10.1007/978-1-4939-6613-4_21

    Chapter  Google Scholar 

  49. Horsman, D., Kendon, V., Stepney, S., Young, J.P.W.: Abstraction and representation in living organisms: When does a biological system compute? In: Dodig-Crnkovic, G., Giovagnoli, R. (eds.) Representation and Reality in Humans, Other Living Organisms and Intelligent Machines, pp. 91–116. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-43784-2_6

    Chapter  Google Scholar 

  50. Stone, R.B., Wood, K.L.: Development of a functional basis for design. In: Volume 3: 11th nternational Conference on Design Theory and Methodology, pp. 261–275. American Society of Mechanical Engineers, Las Vegas, Nevada, USA (1999). https://doi.org/10.1115/DETC99/DTM-8765

  51. Bhatta, S.R., Goel, A.K.: Discovery of physical principles from design experiences. AIEDAM. 8, 113–123 (1994). https://doi.org/10.1017/S0890060400000718

    Article  Google Scholar 

  52. Goel, A.K., Bhatta, S.R.: Use of design patterns in analogy-based design. Adv. Eng. Inform. 18, 85–94 (2004). https://doi.org/10.1016/j.aei.2004.09.003

    Article  Google Scholar 

  53. Pereira, C.M., Sousa, P.: A method to define an enterprise architecture using the zachman framework. In: Proceedings of the 2004 ACM Symposium on Applied Computing - SAC ’04, p. 1366. ACM Press, Nicosia, Cyprus (2004). https://doi.org/10.1145/967900.968175

  54. Sharma, S., Sarkar, P.: Capturing knowledge transfer using Zachman framework in bio-inspired design process. In: Chakrabarti, A., Poovaiah, R., Bokil, P., Kant, V. (eds.) Design for Tomorrow, vol. 2, pp. 563–574. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-0119-4_45

    Chapter  Google Scholar 

  55. Sharma, S., Sarkar, P.: Biological knowledge capture and representation inspired by Zachman framework principles. Int. J. Interact. Des. Manuf. (IJIDeM) (2023). https://doi.org/10.1007/s12008-023-01259-y

    Article  Google Scholar 

  56. Sharma, S., Sarkar, P.: Knowledge capture and its representation using concept map in bioinspired design. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-01069-8

    Article  Google Scholar 

  57. Vincent, J.F.V., Bogatyreva, O., Pahl, A.-K., Bogatyrev, N., Bowyer, A.: Putting Biology into TRIZ: A Database of Biological Effects. Creativity & Inn Man. 14, 66–72 (2005). https://doi.org/10.1111/j.1476-8691.2005.00326.x

  58. Pandremenos, J., Vasiliadis, E., Chryssolouris, G.: Design architectures in biology. Procedia CIRP 3, 448–452 (2012). https://doi.org/10.1016/j.procir.2012.07.077

    Article  Google Scholar 

  59. Vattam, S.S., Goel, A.K., Rugaber, S., Hmelo-Silver, C.E., Gray, S., Sinha, S.: Understanding complex natural systems by articulating structure-behavior-function models. J. Educ. Technol. Soc. 14, 66–81 (2011)

    Google Scholar 

  60. Goel, A.: Design, analogy, and creativity. IEEE Expert 12, 62–70 (1997). https://doi.org/10.1109/64.590078

    Article  Google Scholar 

  61. Yaner, P.W., Goel, A.K.: From form to function: from SBF to DSSBF. In: Gero, J.S. (ed.) Design Computing and Cognition ‘06, pp. 423–441. Springer, Dordrecht (2006). https://doi.org/10.1007/978-1-4020-5131-9_22

    Chapter  Google Scholar 

  62. Goel, A.K., Rugaber, S., Vattam, S.: Structure, behavior, and function of complex systems: The structure, behavior, and function modeling language. AIEDAM 23, 23–35 (2009). https://doi.org/10.1017/S0890060409000080

    Article  Google Scholar 

  63. Cascini, G., Fantoni, G., Montagna, F.: Situating needs and requirements in the FBS framework. Des. Stud. 34, 636–662 (2013). https://doi.org/10.1016/j.destud.2012.12.001

    Article  Google Scholar 

  64. Bhatta, S., Goel, A., Prabhakar, S.: Innovation in analogical design: a model-based approach. In: Gero, J.S., Sudweeks, F. (eds.) Artificial Intelligence in Design ’94, pp. 57–74. Springer, Dordrecht (1994). https://doi.org/10.1007/978-94-011-0928-4_4

    Chapter  Google Scholar 

  65. Goel, A.K.: Biologically inspired design: a new program for computational sustainability. IEEE Intell. Syst. 28, 80–84 (2013). https://doi.org/10.1109/MIS.2013.58

    Article  Google Scholar 

  66. Vandevenne, D., Verhaegen, P.-A., Dewulf, S., Duflou, J.R.: A scalable approach for ideation in biologically inspired design. AIEDAM 29, 19–31 (2015). https://doi.org/10.1017/S0890060414000122

    Article  Google Scholar 

  67. Barthlott, W., Neinhuis, C.: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997). https://doi.org/10.1007/s004250050096

    Article  Google Scholar 

  68. Bhushan, B., Nosonovsky, M.: The rose petal effect and the modes of superhydrophobicity. Proc. R. Soc. A. 368, 4713–4728 (2010). https://doi.org/10.1098/rsta.2010.0203

    Article  MathSciNet  MATH  Google Scholar 

  69. Ebert, D., Bhushan, B.: Durable Lotus-effect surfaces with hierarchical structure using micro- and nanosized hydrophobic silica particles. J. Colloid Interface Sci. 368, 584–591 (2012). https://doi.org/10.1016/j.jcis.2011.09.049

    Article  Google Scholar 

  70. Marmur, A.: The lotus effect: superhydrophobicity and metastability. Langmuir 20, 3517–3519 (2004). https://doi.org/10.1021/la036369u

    Article  Google Scholar 

  71. Matthews, P.G.D., Seymour, R.S.: Stomata actively regulate internal aeration of the sacred lotus Nelumbo nucifera: stomata regulate convective airflow in lotus. Plant Cell Environ. 37, 402–413 (2014). https://doi.org/10.1111/pce.12163

    Article  Google Scholar 

  72. Helms, M., Vattam, S., Goel, A.: The effect of functional modeling on understanding complex biological systems. In: Volume 5: 22nd international conference on design theory and methodology; special conference on mechanical vibration and noise, pp. 107–115. ASMEDC, Montreal, Quebec, Canada (2010). https://doi.org/10.1115/DETC2010-28939

  73. Goel, A.K., Vattam, S., Wiltgen, B., Helms, M.: Cognitive, collaborative, conceptual and creative — four characteristics of the next generation of knowledge-based CAD systems: a study in biologically inspired design. Comput. Aided Des. 44, 879–900 (2012). https://doi.org/10.1016/j.cad.2011.03.010

    Article  Google Scholar 

  74. GeorgiaTech: Learning about SBF Models, http://dilab.cc.gatech.edu/dane/?page=LearningAboutSBFModels

  75. Vasudev, H., Thakur, L., Singh, H., Bansal, A.: Mechanical and microstructural behaviour of wear resistant coatings on cast iron lathe machine beds and slides. Kovove Mater. (2018). https://doi.org/10.4149/km2018-1-55

    Article  Google Scholar 

  76. Singh, G., Vasudev, H., Arora, H.: A short note on the processing of materials through microwave route. In: Advances in Materials Processing: Select Proceedings of ICFMMP 2019, pp. 101–111. Springer, New York (2020)

    Chapter  Google Scholar 

  77. P. Singh, H. Vasudev, A. Bansal, Effect of post-heat treatment on the microstructural, mechanical, and bioactivity behavior of the microwave-assisted alumina-reinforced hydroxyapatite cladding. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 09544089221116168 (2022)

  78. Singh, M., Vasudev, H., Singh, M.: Surface protection of SS-316L with boron nitride based thin films using radio frequency magnetron sputtering technique. J. Electrochem. Sci. Eng. 12, (2022) 851–863

    Google Scholar 

  79. Singh, J., Gill, H.S., Vasudev, H.: Computational fluid dynamics analysis on role of particulate shape and size in erosion of pipe bends. Int. J. Interact. Des. Manuf. (IJIDeM) (2022), PP. 1–16

  80. Prashar, G., Vasudev, H., Thakur, L., Bansal, A.: Performance of thermally sprayed hydroxyapatite coatings for biomedical implants: a comprehensive review. Surf. Rev. Lett. (SRL) 30, 1–29 (2023)

    Google Scholar 

  81. Sharma, Y., Vasudev, H.: A short note on the friction stir welding of the aluminum alloys. In: Advances in Materials Processing: Select Proceedings of ICFMMP 2019, pp. 123–129. Springer, New York (2020)

    Chapter  Google Scholar 

  82. Prashar, G., Vasudev, H.: A review on the influence of process parameters and heat treatment on the corrosion performance of Ni-based thermal spray coatings. Surf. Rev. Lett. 29, 2230001 (2022)

    Article  Google Scholar 

  83. Prashar, G., Vasudev, H.: Structure-property correlation of plasma-sprayed inconel625-Al2O3 bimodal composite coatings for high-temperature oxidation protection. J. Therm. Spray Technol. 31, 2385–2408 (2022). https://doi.org/10.1007/s11666-022-01466-1

    Article  Google Scholar 

  84. Prashar, G., Vasudev, H., Bhuddhi, D.: Additive manufacturing: expanding 3D printing horizon in industry 4.0. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-00956-4

    Article  Google Scholar 

  85. Singh, M., Kumar, R., Vasudev, H., Gulati, V., Singh, M.: Methods of improvement of mechanical and tribological properties of the surface of ss 316l: a review. Int. J. Sci. Technol. Res. 8, 2023–2027 (2019)

    Google Scholar 

  86. Vasudev, H.: Wear characteristics of Ni-WC powder deposited by using a microwave route on mild steel: microwave cladding of Ni-WC. Int. J. Surf. Eng. Interdiscip. Mater. Sci. (IJSEIMS). 8, 44–54 (2020)

    Google Scholar 

  87. Parkash, J., Saggu, H.S., Vasudev, H.: A short review on the performance of high velocity oxy-fuel coatings in boiler steel applications. Mater. Today Proc. 50, 1442–1446 (2022)

    Article  Google Scholar 

  88. Sunitha, K., Vasudev, H.: A short note on the various thermal spray coating processes and effect of post-treatment on Ni-based coatings. Mater. Today Proc. 50, 1452–1457 (2022)

    Article  Google Scholar 

  89. Yedida, V.V.S., Vasudev, H.: A review on the development of thermal barrier coatings by using thermal spray techniques. Mater. Today Proc. 50, 1458–1464 (2022)

    Article  Google Scholar 

  90. Singh, P., Bansal, A., Vasudev, H.: In situ surface modification of stainless steel with hydroxyapatite using microwave heating. Surf. Topogr. Metrol. Prop. 9, 35053 (2021). https://doi.org/10.1088/2051-672X/ac28a9

    Article  Google Scholar 

  91. Majji, B.G.R., Vasudev, H., Bansal, A.: A review on the oxidation and wear behavior of the thermally sprayed high-entropy alloys. Mater. Today Proc. 50, 1447–1451 (2022)

    Article  Google Scholar 

  92. Singh, G., Vasudev, H., Bansal, A., Vardhan, S.: Influence of heat treatment on the microstructure and corrosion properties of the Inconel-625 clad deposited by microwave heating. Surf. Topogr. Metrol. Prop. 9, 25019 (2021)

    Article  Google Scholar 

  93. Prashar, G., Vasudev, H.: Surface topology analysis of plasma sprayed Inconel625-Al2O3 composite coating. Mater. Today Proc. 50, 607–611 (2022)

    Article  Google Scholar 

  94. Singh, M., Vasudev, H., Kumar, R.: Corrosion and tribological behaviour of bn thin films deposited using magnetron sputtering. Int. J. Surf. Eng. Interdiscip. Mater. Sci. (IJSEIMS) 9, 24–39 (2021)

    Google Scholar 

  95. Dutta, V., Thakur, L., Singh, B., Vasudev, H.: A study of erosion – corrosion behaviour of friction stir-processed chromium-reinforced NiAl bronze composite. Materials 15, 5401 (2022). https://doi.org/10.3390/ma15155401

    Article  Google Scholar 

  96. Mehta, A., Vasudev, H., Singh, S., Prakash, C., Saxena, K.K., Linul, E., Buddhi, D., Xu, J.: Processing and advancements in the development of thermal barrier coatings: a review. Coatings 12, 1318 (2022)

    Article  Google Scholar 

  97. Vasudev, H., Prashar, G., Thakur, L., Bansal, A.: Electrochemical corrosion behavior and microstructural characterization of HVOF sprayed Inconel-718 coating on gray cast iron. J. Fail. Anal. Prev. 21, 250–260 (2021)

    Article  Google Scholar 

  98. Sharma, Y., Singh, K.J., Vasudev, H.: Experimental studies on friction stir welding of aluminium alloys. Mater. Today Proc. 50, 2387–2391 (2022)

    Article  Google Scholar 

  99. Vasudev, H., Singh, P., Thakur, L., Bansal, A.: Mechanical and microstructural characterization of microwave post processed Alloy-718 coating. Mater. Res. Express. 6, 1265f5 (2020)

    Article  Google Scholar 

  100. Singh, M., Vasudev, H., Kumar, R.: Microstructural characterization of BN thin films using RF magnetron sputtering method. Mater. Today Proc. 26, 2277–2282 (2020)

    Article  Google Scholar 

  101. Arora, H., Kumar, V., Prakash, C., Pimenov, D., Singh, M., Vasudev, H., Singh, V.: Analysis of sensitization in austenitic stainless steel-welded joint. In: Advances in Metrology and Measurement of Engineering Surfaces, pp. 13–23. Springer, Singapore (2021)

    Chapter  Google Scholar 

  102. Prashar, G., Vasudev, H., Thakur, L.: High-temperature oxidation and erosion resistance of Ni-based thermally-sprayed coatings used in power generation machinery: a review. Surf. Rev. Lett. 29, 2230003 (2022)

    Article  Google Scholar 

  103. Vasudev, H., Prashar, G., Thakur, L., Bansal, A.: Electrochemical corrosion behavior and microstructural characterization of HVOF sprayed inconel718-Al2O3 composite coatings. Surf. Rev. Lett. 29, 2250017 (2022). https://doi.org/10.1142/S0218625X22500172

    Article  Google Scholar 

  104. Singh, G., Vasudev, H., Bansal, A., Vardhan, S., Sharma, S.: Microwave cladding of Inconel-625 on mild steel substrate for corrosion protection. Mater. Res. Express (2020). https://doi.org/10.1088/2053-1591/ab6fa3

    Article  Google Scholar 

  105. Prashar, G., Vasudev, H.: High temperature erosion behavior of plasma sprayed Al2O3 coating on AISI-304 stainless steel. World J. Eng. (2021). https://doi.org/10.1108/WJE-10-2020-0476

    Article  Google Scholar 

  106. Prashar, G., Vasudev, H., Thakur, L.: Influence of heat treatment on surface properties of HVOF deposited WC and Ni-based powder coatings: A review. Surf. Topogr. Metrol. Prop. 9, 043002 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Sarkar, P. A framework to describe biological entities for bioinspiration. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01281-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01281-0

Keywords

Navigation