Skip to main content
Log in

A review on parametric optimization of EDM process for nanocomposites machining: experimental and modelling approach

  • Review
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

In this day and age of micro machining, the most well-known non-conventional machining technology is known as electro-discharge machining, or EDM. It can quickly produce complicated 2D and 3D designs on challenging materials while preserving excellent feature quality. The micro-sized hole is crucial for components used in the biomedical, electronics, optical, and aerospace industries since they cannot be produced using the conventional machining method. As documented in the literature, it is challenging to machine nanocomposites using different standard and non-traditional machining techniques because of its better anisotropic, heterogeneous structure, and increased mechanical characteristics. This work emphasises the precise micromachining on the nanocomposites based on three different factors: feasibility of EDM process for non conductive matrix based material. Second, the correlation between process parameters and output parameters taking place during machining. Next, about the optimization techniques for Surface topography, tool wear ratio, rate of removal of material, and microstructures of EDM-machined parts and its effect on energy consumption and environmental effect. Finally, taking into consideration the gaps found in the available literature, a conclusion and some suggestion for further research have been suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mouralova, K., Zahradnicek, R., Benes, L., Prokes, T., Hrdy, R., Fries, J.: Study of micro structural material changes after WEDM based on TEM lamella analysis. Metals 10, 949 (2020)

    Article  Google Scholar 

  2. Grigoriev, S.N., Masterenko, D.A., Teleshevskii, V.I., et al.: Contemporary state and outlook for development of metrological assurance in the machine-building industry. Meas. Tech. 55, 1311 (2013)

    Article  Google Scholar 

  3. Senthilkumar, T.S., Muralikannan, R.: Evaluation of recast layer and parametric optimization of EDM process on aluminium based HMMCs using grey relational analysis. Mater. Res. Express. 6, 1065a6 (2019).

  4. Grigoriev, S.N., Kozochkin, M.P., Porvatov, A.N., Volosova, M.A., Okunkova, A.A.: Electrical discharge machining of ceramic nanocomposites: Sublimation phenomena and adaptive control. Heliyon 5, e02629 (2019)

    Article  Google Scholar 

  5. Wei, C., Zhao, L., Hu, D., Ni, J.: Electrical discharge machining of ceramic matrix composites with ceramic fiber reinforcements. Int. J. Adv. Manuf. Technol. 64, 187–194 (2013)

    Article  Google Scholar 

  6. Wang, J., Kaskel, S.: KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22, 23710–23725 (2012)

    Article  Google Scholar 

  7. Vijay, P., Unnati, J., Anand, J.: Investigating the mechanical properties of nonfunctionalized MWCNT reinforced polymer nanocomposites. Mater. Today: Proc. 43(1), 3511–3515 (2021)

    Google Scholar 

  8. Kalpani Y. P., Swarna J., Amit K. J.; A review on nanomaterials and nanohybrids based bio nanocomposites for food packaging. FoodChemistry, 376 (2022).

  9. Stanciu, N.-V., Stan, F., Sandu, I.-L., Fetecau, C., Turcanu, A.-M.: Thermal, rheological, mechanical, and electrical properties of polypropylene/multi-Walled carbon nanotube nanocomposites. Polymer, 13187 (2021).

  10. Yetgin, S.H.: Effect of multi walled carbon nanotube on mechanical, thermal and rheological properties of polypropylene. J. Mater. Res. Technol. 8, 4725–4735 (2019)

    Article  Google Scholar 

  11. Patil, J., Patil, H., Sankpal, R., Rathod, D., Patil, K., Kubade, P.R., Kulkarni, H.B.: Studies on mechanical and thermal performance of carbon nanotubes/polypropylene nanocomposite. Mater. Today Proc. 46, 7182–7186 (2020)

    Article  Google Scholar 

  12. Tan, H.-S., Guo, X.-X., Tan, H., Zhang, Q.-L., Liu, C.-H., Shen, P.-H., Qiao, L., Yan, X., Jing, L.-Y.: Crystallization and mechanical properties of carbon nanotube/continuous carbon fiber/metallocene polypropylene composites. Mater. Res. Express 9, 015302 (2022)

    Article  Google Scholar 

  13. Chaudhury, P., Samantaray, S.: Role of carbon nano tubes in surface modification on electrical discharge machining—a review. Mater Today Proc 4, 4079–4088 (2017)

    Article  Google Scholar 

  14. Kumar, J., Verma, R.K.: Experimental investigation for machinability aspects of graphene oxide/carbon fiber reinforced polymer nanocomposites and predictive modeling using hybrid approach. Defence Technol. 17, 1671–1686 (2021)

    Article  Google Scholar 

  15. Prateek, B.R., Gupta, S., Garg, A., Gupta, R. K.; In-situ fabrication of barium titanate@polyvinylpyrrolidone in polyvinylidene fluoride polymer nanocomposites for dielectric capacitor applications. J. Polymer Sci. 60, 961–967 (2022).

  16. Sengwa, R.J., Dhatarwal, P.: Toward multifunctionality of PEO/PMMA/MMT hybrid polymer nanocomposites: Promising morphological, nanostructural, thermal, broadband dielectric, and optical properties. J. Phys. Chem. Solids 166, 110708 (2022)

    Article  Google Scholar 

  17. Yousfi, M., Samuel, C., Soulestin, J., Lacrampe, M.F.; Rheological considerations in processing self-reinforced thermoplastic polymer nanocomposites: a review. Polymers (Basel), 14 (2022).

  18. Sarıipek, F.B., Sevgi, F., Dursun, S.: Preparation o.f poly(ε-caprolactone) nanofibrous mats incorporating graphene oxide-silver nanoparticle hybrid composite by electrospinning method for potential antibacterial applications. Colloids Surf A PhysicochemEng Asp. 653, 129969 (2022)

    Article  Google Scholar 

  19. Torabfam, M., Nejatpour, M., Fidan, T., Kurt, H., Yüce, M., Bayazit, M.K.: A microwave-powered continuous fluidic system for polymer nanocomposite manufacturing: a proof-of-concept study. Green Chem. 24, 2812–2824 (2022)

    Article  Google Scholar 

  20. Li, P., et al., A Preliminary Study on Machinability of Polymethylmethacrylate (PMMA)/Multi-Walled Carbon Nanotube (MWCNT) Nanocomposites in Focused Ion Beam Micromachining. pp 515–523 (2011), https://doi.org/10.1115/MSEC2011-50115

  21. P. Sai Shravan Kumar, K. Viswanath Allamraju, A review of natural fiber composites [Jute, Sisal, Kenaf]. Mater. Today: Proc. 18(Part 7), 2019, Pages 2556–2562. ISSN 2214–7853 (2019), https://doi.org/10.1016/j.matpr.2019.07.113

  22. Beitollahi, H., Dourandish, Z., Tajik, S., Jahani, P.M.: Application of conductive polymer nanocomposites. ACS Symp. Ser. 1405, 313–344 (2022)

    Article  Google Scholar 

  23. Darwish, M.S.A, Mostafa, M.H., Al-Harbi, L.M.: Polymeric nanocomposites for environmental and industrial applications. Int J MolSci, 23 (2022).

  24. Budarapu, P.R., Yb, S.S., Javvaji, B., et al.: Vibration analysis of multi-walled carbon nanotubes embedded in elastic medium. Front. Struct. Civ. Eng. 8, 151–159 (2014). https://doi.org/10.1007/s11709-014-0247-9

    Article  Google Scholar 

  25. Yoo, S. C., Lee, D., Ryu, S. W., Kang, B., Ryu, H. J., Hong, S. H.; Recent progress in low-dimensional nanomaterials filled multifunctional metal matrix nanocomposites. Progress Mater. Sci. 132 (2023).

  26. Martínez-Franco, E., Trejo-Camacho, J., Ma, C., Díaz de la Torre, S., García-Moreno, A.I., Benítez-Castro, A.M., Trapaga-Martinez, G., Alvarado-Orozco, J.M., Muñoz-Saldaña, J.: Mechanical characterization by multiscale indentation of particle reinforced Nickel-Alumina metal matrix nanocomposites obtained by high-kinetic processing of ball milling and spark plasma sintering. J. Alloys Compounds, 927, 166880. ISSN 0925-8388 (2022).

  27. Ruchira B., Atif I., Tanmay G., Pallav G.: Effect of ceramic reinforcement on the properties of iron based metal matrix nanocomposites. Mater. Today Proc. 38(Part 1), 305–312. ISSN 2214-7853 (2021).

  28. MeysamT.-K., Kumar, A., Omrani, E., Kim, C., Rohatgi, P.: Synthesis, characterization, and properties of graphene reinforced metal-matrix nanocomposites. Compos. Part B: Eng. 183, 107664. ISSN 1359-8368 (2020).

  29. Siddharth S., Ashish G., Prateek B., Oza, A. D., Pandey, A.: Application of metal matrix composite fabricated by reinforcement materials—a review. Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.02.287.

  30. Nidhi S., Tuhina S., NasimulAlam, S., Chandra Ray, B., Biswas, K., Shikhar, K.: Ceramic-based nanocomposites: A perspective from carbonaceous nanofillers. Mater. Today Commun. 31, 103764. ISSN 2352-4928 (2022). https://doi.org/10.1016/j.mtcomm.2022.103764.

  31. Murugan, C., Kumar, R.M.S., Alagarsamy, S.v.: Investigations on electric discharge machining behaviour of Si3N4-TiN ceramic composite. Silicon, 14, 547–555 (2022).

  32. Lauwers, B., Vleugels, J., Malek, O., Brans, K., Liu, K.: Electrical discharge machining of composites, pp. 202–241. Elsevier, Machining Technology for Composite Materials (2012)

    Google Scholar 

  33. Neha, R., Radha, R., Amrita, K., Bhardwaj, B. Y., Gupta, M.: Chapter 18—Polymer-matrix nanocomposites and its potential applications. In: Suresh, P. V., Udita, A., Rajeev, S. (Editors.) Smart Polymeric Nano-Constructs in Drug Delivery. Academic Press, New York, pp 567–583 (2023).

  34. Arun Kumar, S., Rakesh, B., Chaitanya, S., Shri Krishna, D., Camelia, P.-B.: Polymer matrix composites: A state of art review. Mater. Today Proc. 57(Part 5), pp 2330–2333. ISSN 2214-7853 (2022).

  35. Jie, L., Peng, W.-J., Fu, Z.-J., Tang, X.-H., Wu, H., Guo, S., Wang, M.: Achieving high electrical conductivity and excellent electromagnetic interference shielding in poly(lactic acid)/silver nanocomposites by constructing large-area silver nanoplates in polymer matrix. Compos. B Eng. 171, 204–213 (2019)

    Article  Google Scholar 

  36. Qing, M., Bin, H., Xiu, Y., Ma, P.-C.: Matrix dominated positive/negative piezoresistance in conducting polymer nanocomposites reinforced by CNT foam. Polymer, 257 (2022).

  37. Gopalakannan, S., Senthilvelan, T.: A parametric study of electrical discharge machining process parameters on machining of cast Al/B4C metal matrix nanocomposites. Proc. Inst. Mech. Eng. Part B. J. Eng. Manuf. 227(7), 993–1004 (2013). https://doi.org/10.1177/0954405413479505

    Article  Google Scholar 

  38. Chengmao, Z.: Effect of wire electrical discharge machining (WEDM) parameters on surface integrity of nanocomposite ceramics. CeramicsInternational, 40(issue 7, Part A), pp 9657–9662. ISSN 0272–8842 (2014).

  39. Wan, Y, Kim, D, Jang, J, Park, Y.: Micro Electro Discharge Machining of CNT-Based Nanocomposite Materials. In: Proceedings of the ASME 2007 International Mechanical Engineering Congress and Exposition. Volume 3: Design and Manufacturing. Seattle, Washington, USA. November 11–15, pp. 409–413 (2007).

  40. Mahanta, S., Chandrasekaran, M., Samanta, S.: RSM modeling and Taguchi analysis of EDM of B4C and flyash reinforced hybrid nanocomposites. KEM 801, 227–232 (2019)

    Article  Google Scholar 

  41. Kavimani, V., Soorya Prakash, K., Thankachan, T.: Influence of machining parameters on wire electrical discharge machining performance of reduced graphene oxide/magnesium composite and its surface integrity characteristics. Compos. Part B: Eng. 167, 621–630 (2019).

  42. Liew, P. J., Zainal, N., Ahsan, Q.: Preparation and characterization of carbon nanofiber reinforced copper composite electrodes via powder metallurgy process for electrical discharge machining applications. Int. J. Appl. Eng. Res 12(10), 2253–2261 (2017).

  43. Pitchipoo, P., Narayanasamy, P., Senthilkumar, T.S.: Surface and subsurface investigation of Al-Mg-MoS2 composite on performing wire electrical discharge machining. Surf. Topogr. Metrol. Prop. 10(1), 015047 (2022)

    Article  Google Scholar 

  44. Surendra, S., Brijesh, P., Upadhyay, R.K., Singh, N.K.: Improvement of process performance of powder mixed electrical discharge machining by optimisation—a review. Adv. Mater. Process. Technol. 8(3), 3074–3104 (2022). https://doi.org/10.1080/2374068X.2021.1945300

    Article  Google Scholar 

  45. Gopalakannan, S., Senthilvelan, T.: EDM of cast Al/SiC metal matrix nanocomposites by applying response surface method. Int. J. Adv. Manuf. Technol. 67, 485–493 (2013)

    Article  Google Scholar 

  46. Hourmand, M., Farahany, S., Sarhan, A.A.D., Noordin, M.Y.: Investigating the electrical discharge machining (EDM) parameter effects on Al-Mg2Si metal matrix composite (MMC) for high material removal rate (MRR) and less EWR–RSM approach. Int. J. Adv. Manuf. Technol. 77(5–8), 831–838 (2015)

    Article  Google Scholar 

  47. Arunnath, A., Madhu, S., Tufa, M.: Experimental investigation and optimization of material removal rate and tool wear in the machining of aluminum-boron carbide (Al-B4C) nanocomposite using EDM process. Adv. Mater. Sci. Eng. 2022, 11. Article ID 4254024. (2022).

  48. Uma Maheshwera Reddy, P., Suryapavan, C., Venkat, P.K.P., SritejaSalike, N.S. Reddy, SrijaCheruku.: Machine learning and statistical approach in modeling and optimization of surface roughness in wire electrical discharge machining. Mach. Learn. Appl. 6 (2021).

  49. Mandal, P., Mondal, S.C.: Multi-objective optimization of Cu-MWCNT composite electrode in electro discharge machining using MOPSO-TOPSIS. Measurement 169, 108347 (2021).

  50. Singh, G., Yadava, V., Kumar, R.: Modelling and optimisation of electro-discharge diamond face grinding of cemented carbide–cobalt composite. Int. J. Ind. Syst. Eng. 12(2), 141–164 (2012)

    Google Scholar 

  51. Pilania, G., Goldsmith, B.R., Yoon, M., et al.: Recent advances in computational materials design: methods, applications, algorithms, and informatics. J. Mater. Sci. 57, 10471–10474 (2022)

    Article  Google Scholar 

  52. Khader, M., Hamdia, H. G., Yakoub, B., Haikel, A.H., Naif, A., Timon, R.: A novel deep learning based method for the computational material design of flexoelectric nanostructures with topology optimization. Finite Elem. Anal. Des. 165, 21–30 (2019)

    Article  MathSciNet  Google Scholar 

  53. Cang, R., Xu, Y., Chen, S., Liu, Y., Jiao, Y., Yi Ren, M.: Microstructure representation and reconstruction of heterogeneous materials via deep belief network for computational material design. ASME. J. Mech. Des. 139(7), 071404 (2017).

  54. Ablyaz, T.R., Shlykov, E.S., Muratov, K.R., Zhurin, A.V.: Study of the EDM process of bimetallic materials using a composite electrode tool. Materials 15, 750 (2022). https://doi.org/10.3390/ma15030750

    Article  Google Scholar 

  55. Suresh, S., Sudhakara, D.: Investigations on wire electric discharge machining and mechanical behavior of Al 7075/Nano-SiC composites. J. Inst. Eng. India Ser. D 100, 217–227 (2019)

    Article  Google Scholar 

  56. Chander Prakash, H.K., Kansal, B.S., Pabla, Sanjeev Puri: Experimental investigations in powder mixed electric discharge machining of Ti–35Nb–7Ta–5Zrβ-titanium alloy. Mater. Manuf. Process. 32(3), 274–285 (2017)

    Article  Google Scholar 

  57. Prakash, C., Kansal, H.K., Pabla, B.S., et al.: Multi-objective optimization of powder mixed electric discharge machining parameters for fabrication of biocompatible layer on β-Ti alloy using NSGA-II coupled with Taguchi based response surface methodology. J. Mech. Sci. Technol. 30, 4195–4204 (2016)

    Article  Google Scholar 

  58. Pramanik, A., Basak, A.K., Prakash, C.: Understanding the wire electrical discharge machining of Ti6Al4V alloy. Heliyon 5(Issue 4), e01473.ISSN 2405–8440 (2019). https://doi.org/10.1016/j.heliyon.2019.e01473.

  59. Gupta, N.K., Somani, N., Prakash, C., Singh, R., Walia, A.S., Singh, S., Pruncu, C.I.: Revealing the WEDM process parameters for the machining of pure and heat-treated titanium (Ti-6Al-4V) alloy. Materials 14, 2292 (2021)

    Article  Google Scholar 

  60. Zhang, C.: Effect of wire electrical discharge machining (WEDM) parameters on surface integrity of nanocomposite ceramics. CeramicsInternational, 40(Issue 7, Part A), 9657–9662 (2014).

  61. Ranjith Kumar, S., Srinivasan, V. P., Balamurugan, S., Dinesh Krishnaa, S., Gokul, V., Anudeep, S.: Optimization of machine machining parameters in EDM of silicon nitride-titanium nitride based on RSM. Mater. Today Proc. 45(Part 2), 1312–1318 (2021).

  62. Hanaoka, D., Fukuzawa, Y., Ramirez, C., Miranzo, P., Osendi, M.I., Belmonte, M.: Electrical discharge machining of ceramic/carbon nanostructure composites. Proc. CIRP 6, 95–100 (2013)

    Article  Google Scholar 

  63. Vishwakarma, R., Verma, R.K., Debnath, K.: Investigation on Micro Electric Discharge Machining of Polymer Nanocomposites Modified by Graphene Nanoplatelet. In: Dixit, U.S., Kanthababu, M., Ramesh Babu, A., Udhayakumar, S. (eds) Advances in forming, machining and automation. Lecture Notes in Mechanical Engineering. Springer, Singapore, (2023). https://doi.org/10.1007/978-981-19-3866-5_28

  64. Priti, M.S., SarbjitSingh: Micro-machining of CFRP composite using electrochemical discharge machining and process optimization by Entropy-VIKOR method. Mater. Today Proc.44(Part 1), 260–265 (2021)

  65. Chen, N., Kong, L., Lei, W., Qiu, R.: Experimental study on EDM of CFRP based on graphene aqueous solution. Mater. Manuf. Process. (2023). https://doi.org/10.1080/10426914.2023.2165674,(1-10)

    Article  Google Scholar 

  66. Hassan, A., Yan, L. H., Mudassar, R., Kashif, I., Sadaf, Z., Mirza, Z. H., Farah, S., Wang, D. C.: Machinability investigation in electric discharge machining of carbon fiber reinforced composites for aerospace applications. Polym. Compos. (2022). https://doi.org/10.1002/pc.26878,43,11

    Article  Google Scholar 

  67. Singh, MeinamAnnebushan, Deba Kumar Sarma.: Parametric and subsurface analysis of MWCNT alumina composites in WEDM process. CeramicsInternational 44(2), 2186–2197 (2018)

  68. Antil, P., Singh, S., Manna, A.: Experimental investigation during Electrochemical Discharge Machining (ECDM) of hybrid polymer matrix composites. Iran J. Sci. Technol. Trans. Mech. Eng. 44, 813–824 (2020). https://doi.org/10.1007/s40997-019-00280-5

    Article  Google Scholar 

  69. Prakash, C., Singh, S., Singh, M., Antil, P., Aliyu, A., Abdul-Rani, A. M., Sidhu, S.: Multi-objective optimization of MWCNT mixed electric discharge machining of Al–30SiCp MMC using particle swarm optimization. In: Sidhu, S., Bains, P., Zitoune, R., Yazdani, M. (eds) Futuristic Composites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-2417-8_7

  70. Wan, Yi, et al.: Micro electro discharge machining of polymethylmethacrylate (PMMA)/multi-walled carbon nanotube (MWCNT) nanocomposites. Adv. Compos. Lett. 17, 4 (2008).

  71. Sharma, A.K., Singh, V., Goyal, A., et al.: Experimental analysis of Inconel 625 alloy to enhance the dimensional accuracy with vibration assisted micro-EDM. Int. J. Interact. DesManuf. (2023). https://doi.org/10.1007/s12008-023-01228-5

    Article  Google Scholar 

  72. Grigoriev, S.N., Volosova, M.A., Okunkova, A.A., Fedorov, S.V., Hamdy, K., Podrabinnik, P.A., Pivkin, P.M., Kozochkin, M.P., Porvatov, A.N.: Electrical discharge machining of oxide nanocomposite: nanomodification of surface and subsurface layers. J. Manuf. Mater. Process. 4, 96 (2020)

    Google Scholar 

  73. Oza, A.D., Kumar, A., Badheka, V., et al.: Traveling Wire Electrochemical Discharge Machining (TW-ECDM) of quartz using zinc coated brass wire: investigations on material removal rate and Kerf width characteristics. Silcon 11, 2873–2884 (2019)

    Article  Google Scholar 

  74. Nguyen H., Phan, Muthuramalingam, T., Nguyen, D. M., Nguyen, D.: Enhancing surface morphology of machined SKD61 die steel in EDM process using DEAR approach based multi criteria decision making. Int. J. Interact. Des. Manufact. (IJIDeM). 16 (2022). https://doi.org/10.1007/s12008-022-00859-4.

  75. Shabgard, M., Khosrozadeh, B.: Investigation of carbon nanotube added dielectric on the surface characteristics and machining performance of Ti–6Al–4V alloy in EDM process. J. Manufact. Process. 25, 212–219 (2017). https://doi.org/10.1016/j.jmapro.2016.11.016.

  76. Bilal, A., Jahan, M.P., Talamona, D., Perveen, A.: Electro-discharge machining of ceramics: a review. Micromachines 10, 10 (2019)

    Article  Google Scholar 

  77. Vasudev, H., Prashar, G., Thakur, L., Bansal, A.: Microstructural characterization and electrochemical corrosion behaviour of HVOF sprayed Alloy718-nanoAl2O3 composite coatings. Surf. Topogr. Metrol. Prop. 9(3), 035003 (2021)

    Article  Google Scholar 

  78. Vasudev, H., Thakur, L., Singh, H., Bansal, A.: Effect of addition of Al2O3 on the high-temperature solid particle erosion behaviour of HVOF sprayed Inconel-718 coatings. Mater. Today Commun. 30, 103017 (2022). https://doi.org/10.1016/j.mtcomm.2021.103017.

  79. Vasudev, H., Thakur, L., Singh, H., Bansal, A.: Mechanical and microstructural behaviour of wear resistant coatings on cast iron lathe machine beds and slides. Kovove Mater. 56 (2018). https://doi.org/10.4149/km2018-1-55.

  80. Mehta, H., Vasudev, S.: Recent developments in the designing of deposition of thermal barrier coatings–A review. Mater. Today. Proc. 26, 1336–1342 (2020)

    Article  Google Scholar 

  81. Singh, P., Bansal, A., Vasudev, H.: In situ surface modification of stainless steel with hydroxyapatite using microwave heating. Surf. Topogr. Metrol. Prop. 9, 35053 (2021). https://doi.org/10.1088/2051-672X/ac28a9

    Article  Google Scholar 

  82. Bansal, H. V., Sharma, A.K., Kumar, P.: Investigation on the effect of post weld heat treatment on microwave joining of the Alloy-718 weldment. Mater. Res. Express. 6, 086554 (2019). https://doi.org/10.1088/2053-1591/ab1d9a.

  83. Prakash, C., Kansal, H.K., Pabla, B.S., Puri, S.: Effect of surface nano-porosities fabricated by powder mixed electric discharge machining on bone-implant interface: an experimental and finite element study. Nanosci. Nanotechnol. Lett. 8, 815–826 (2016)

    Article  Google Scholar 

  84. Kumar, R., Dubey, R., Singh, S., Singh, S., Prakash, C., Nirsanametla, Y., Królczyk, G., Chudy, R.: Multiple-criteria decision-making and sensitivity analysis for selection of materials for knee implant femoral component. Materials. 14, 2084 (2021)

    Article  Google Scholar 

  85. Pramanik, A., Basak, A.K., Prakash, C.: Understanding the wire electrical discharge machining of Ti6Al4V alloy. Heliyon. 5, e01473 (2019)

    Article  Google Scholar 

  86. Singh, S., Prakash, C., Singh, H.: Deposition of HA-TiO2 by plasma spray on β-phase Ti-35Nb-7Ta-5Zr alloy for hip stem: characterization, mechanical properties, corrosion, and in-vitro bioactivity. Surf. Coat. Technol. 398, 126072 (2020)

    Article  Google Scholar 

  87. Singh, H., Prakash, C., Singh, S.: Plasma spray deposition of HA-TiO2 on β-phase Ti-35Nb-7Ta-5Zr alloy for hip stem: characterization of bio-mechanical properties, wettability, and wear resistance. J. Bionic Eng. 17, 1029–1044 (2020)

    Article  Google Scholar 

  88. Poomathi, N., Singh, S., Prakash, C., Subramanian, A., Sahay, R., Cinappan, A., & Ramakrishna, S. 3D printing in tissue engineering: A state of the art review of technologies and biomaterials. Rapid Prototyping Journal, 26(7), 1313-1334 (2020), https://doi.org/10.1108/RPJ-08-2018-0217

  89. Basak, A.K., Pramanik, A., Prakash, C.: Deformation and strengthening of SiC reinforced Al-MMCs during in-situ micro-pillar compression. Mater. Sci. Eng. A 763, 138141 (2019)

    Article  Google Scholar 

  90. Prakash, C., Singh, S., Gupta, M.K., Mia, M., Królczyk, G., Khanna, N.: Synthesis, characterization, corrosion resistance and in-vitro bioactivity behavior of biodegradable Mg–Zn–Mn–(Si–HA) composite for orthopaedic applications. Materials. 11, 1602 (2018)

    Article  Google Scholar 

  91. Rathi, R., Prakash, C., Singh, S., Krolczyk, G., Pruncu, C.I.: Measurement and analysis of wind energy potential using fuzzy based hybrid MADM approach. Energy Rep. 6, 228–237 (2020)

    Article  Google Scholar 

  92. Prakash, C., Singh, S., Pabla, B.S., Sidhu, S.S., Uddin, M.S.: Bio-inspired low elastic biodegradable Mg-Zn-Mn-Si-HA alloy fabricated by spark plasma sintering. Mater. Manuf. Processes 34, 357–368 (2019)

    Article  Google Scholar 

  93. Prakash, C., Singh, S., Singh, M., Gupta, M.K., Mia, M., Dhanda, A.: Multi-objective parametric appraisal of pulsed current gas tungsten arc welding process by using hybrid optimization algorithms. Int. J. Adv. Manufact. Technol. 101, 1107–1123 (2019)

    Article  Google Scholar 

  94. Prakash, C., Singh, G., Singh, S., Linda, W.L., Zheng, H.Y., Ramakrishna, S., Narayan, R.: Mechanical reliability and in vitro bioactivity of 3D-printed porous polylactic acid-hydroxyapatite scaffold. J. Mater. Eng. Perform. 30, 4946–4956 (2021)

    Article  Google Scholar 

  95. Singh, H., Kumar, R., Prakash, C., Singh, S.: HA-based coating by plasma spray techniques on titanium alloy for orthopedic applications. Mater. Today Proc. 50, 612–628 (2022)

    Article  Google Scholar 

  96. Nguyen, D.-N., Dao, T.-P., Prakash, C., Singh, S., Pramanik, A., Krolczyk, G., Pruncu, C.I.: Machining parameter optimization in shear thickening polishing of gear surfaces. J. Market. Res. 9, 5112–5126 (2020)

    Google Scholar 

  97. Gupta, N.K., Somani, N., Prakash, C., Singh, R., Walia, A.S., Singh, S., Pruncu, C.I.: Revealing the WEDM process parameters for the machining of pure and heat-treated titanium (Ti-6Al-4V) alloy. Materials. 14, 2292 (2021)

    Article  Google Scholar 

  98. Singh, S., Prakash, C., Ramakrishna, S.: Three-dimensional printing in the fight against novel virus COVID-19: Technology helping society during an infectious disease pandemic. Technol. Soc. 62, 101305 (2020)

    Article  Google Scholar 

  99. Kumar, R., Ranjan, N., Kumar, V., Kumar, R., Chohan, J. S., Yadav, A., Sharma, S., Prakash, C., Singh, S., Li, C.: Characterization of friction stir-welded polylactic acid/aluminum composite primed through fused filament fabrication. J. Mater. Eng. Performance. 1–19 (2021).

  100. Poomathi, N., Singh, S., Prakash, C., Patil, R.V., Perumal, P.T., Barathi, V.A., Balasubramanian, K.K., Ramakrishna, S. and Maheshwari, N.U.: Bioprinting in ophthalmology: current advances and future pathways, Rapid Prototyping Journal, 25(3), 496–514 (2019), https://doi.org/10.1108/RPJ-06-2018-0144

  101. Jin, S.Y., Pramanik, A., Basak, A.K., Prakash, C., Shankar, S., Debnath, S.: Burr formation and its treatments—a review. Int. J. Adv. Manufact. Technol. 107, 2189–2210 (2020)

    Article  Google Scholar 

  102. Singh, H., Singh, S., Prakash, C.: Current trends in biomaterials and bio-manufacturing. Biomanufacturing. 1–34 (2019).

  103. Nguyen, H.D., Pramanik, A., Basak, A.K., Dong, Y., Prakash, C., Debnath, S., Shankar, S., Jawahir, I.S., Dixit, S., Buddhi, D.: A critical review on additive manufacturing of Ti-6Al-4V alloy: microstructure and mechanical properties. J. Mater. Res. Technol. 18, e4661 (2022)

    Article  Google Scholar 

  104. Antil, P., Kumar Antil, S., Prakash, C., Krolczyk, G., Pruncu, C.: Multi-objective optimization of drilling parameters for orthopaedic implants. Meas. Control. 53, 1902–1910 (2020).

  105. Kumar, A., Grover, N., Manna, A., Chohan, J.S., Kumar, R., Singh, S., Prakash, C., Pruncu, C.I.: Investigating the influence of WEDM process parameters in machining of hybrid aluminum composites. Adv. Compos. Lett. 29, 2633366X20963137 (2020).

  106. Prakash, C., Singh, S., Basak, A., Królczyk, G., Pramanik, A., Lamberti, L., Pruncu, C.I.: Processing of Ti50Nb50− xHAx composites by rapid microwave sintering technique for biomedical applications. J. Market. Res. 9, 242–252 (2020)

    Google Scholar 

  107. Sandhu, K., Singh, G., Singh, S., Kumar, R., Prakash, C., Ramakrishna, S., Królczyk, G., Pruncu, C.I.: Surface characteristics of machined polystyrene with 3D printed thermoplastic tool. Materials. 13, 2729 (2020)

    Article  Google Scholar 

  108. Ablyaz, T.R., Shlykov, E.S., Muratov, K.R.;,Sidhu, S.S.: Analysis of wire-cut electro discharge machining of polymer composite materials. Micromachines 12, 571 (2021).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matanda, B.K., Patel, V., Singh, B. et al. A review on parametric optimization of EDM process for nanocomposites machining: experimental and modelling approach. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01353-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01353-1

Keywords

Navigation