Skip to main content
Log in

Application of Artificial Neural Network for Yield Prediction of Lipase-Catalyzed Synthesis of Dioctyl Adipate

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, an artificial neural network (ANN) trained by backpropagation algorithm, Levenberg–Marquadart, was applied to predict the yield of enzymatic synthesis of dioctyl adipate. Immobilized Candida antarctica lipase B was used as a biocatalyst for the reaction. Temperature, time, amount of enzyme, and substrate molar ratio were the four input variables. After evaluating various ANN configurations, the best network was composed of seven hidden nodes using a hyperbolic tangent sigmoid transfer function. The correlation coefficient (R 2) and mean absolute error (MAE) values between the actual and predicted responses were determined as 0.9998 and 0.0966 for training set and 0.9241 and 1.9439 for validating dataset. A simulation test with a testing dataset showed that the MAE was low and R 2 was close to 1. These results imply the good generalization of the developed model and its capability to predict the reaction yield. Comparison of the performance of radial basis network with the developed models showed that radial basis function was more accurate but its performance was poor when tested with unseen data. In further part of the study, the feedforward backpropagation model was used for prediction of the ester yield within the given range of the main parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xing, C., Cheng, Z., & Qu, J. (2005). Chemical Reaction Engineering and Technology, 21, 239–243.

    CAS  Google Scholar 

  2. Gu, X., Yu, W., & Ren, F. (2004). Petrochemical Technology, 33, 360.

    CAS  Google Scholar 

  3. Meng, Q., Xi, H., Jiang, Y., & Sun, X. (2007). Speciality Petrochemicals, 24, 27–29.

    CAS  Google Scholar 

  4. Petersson, A. E. V., Gustafsson, L. M., Nordblad, M., Borjesson, P., Mattiasson, B., & Adlercreutz, P. (2005). Green Chemistry, 7, 837–843. doi:10.1039/b510815b.

    Article  CAS  Google Scholar 

  5. Gryglewicz, S. (2001). Journal of Molecular Catalysis. B, Enzymatic, 15, 9–13. doi:10.1016/S1381-1177(00)00246-0.

    Article  CAS  Google Scholar 

  6. Abdul Rahman, M. B., Zaidan, U. H., Basri, M., Hussein, M. Z., Rahman, R. N. Z. A., & Salleh, A. B. (2008). Journal of Molecular Catalysis. B, Enzymatic, 50, 33–39. doi:10.1016/j.molcatb.2007.09.020.

    Article  CAS  Google Scholar 

  7. Bas, D., & Boyaci, I. H. (2007). Journal of Food Engineering, 78, 846–854. doi:10.1016/j.jfoodeng.2005.11.025.

    Article  CAS  Google Scholar 

  8. Hattori, T., & Kito, S. (2007). Applied Catalysis. A, 327, 157–163. doi:10.1016/j.apcata.2007.05.006.

    Article  CAS  Google Scholar 

  9. Chen, Q., & Weigand, W. A. (1994). AIChE Journal, 40, 1488–1497.

    Article  CAS  Google Scholar 

  10. Linko, P., & Zhu, Y. (1991). Journal of Biotechnology, 21, 253–270. doi:10.1016/0168-1656(91)90046-X.

    Article  CAS  Google Scholar 

  11. Manohar, B., & Divakar, S. (2005). Process Biochemistry, 40, 3372–3376. doi:10.1016/j.procbio.2005.03.045.

    Article  CAS  Google Scholar 

  12. Bas, D., Dudak, F. C., & Boyaci, I. H. (2007). Journal of Food Engineering, 79, 1152–1158. doi:10.1016/j.jfoodeng.2006.04.004.

    Article  CAS  Google Scholar 

  13. Linko, S., Luopa, J., & Zhu, Y. H. (1997). Journal of Biotechnology, 52, 257–266. doi:10.1016/S0168-1656(96)01650-1.

    Article  CAS  Google Scholar 

  14. Chegini, G. R., Khazaei, J., Ghobadian, B., & Goudarzi, A. M. (2008). Journal of Food Engineering, 84, 534–543. doi:10.1016/j.jfoodeng.2007.06.007.

    Article  Google Scholar 

  15. Duch, W., & Jankowski, N. (1999). Neural Computing Surveys, 2, 163–212.

    Google Scholar 

  16. Rafiq, M. Y., Bugmann, G., & Easterbrook, D. J. (2001). Computers & Structures, 79, 1541–1552. doi:10.1016/S0045-7949(01)00039-6.

    Article  Google Scholar 

  17. Jenkins, W. M. (1997). The Structural Engineering, 75, 38–41.

    Google Scholar 

  18. Basri, M., Rahman, R. N. Z. A., Ebrahimpour, A., Salleh, A. B., Gunawan, E. R., & Abdul Rahman, M. B. (2007). BMC Biotechnology, 7, 53–63. doi:10.1186/1472-6750-7-53.

    Article  Google Scholar 

  19. Huang, K., Zhan, X. L., Chen, F. Q., & Lu, D. W. (2003). Chemical Engineering Science, 58, 81–87. doi:10.1016/S0009-2509(02)00432-3.

    Article  CAS  Google Scholar 

  20. Battiti, R. (1992). Neural Computation, 4, 141–166. doi:10.1162/neco.1992.4.2.141.

    Article  Google Scholar 

  21. Charalambous, C. (1992). IEEE Proceedings, 139, 301–310.

    Google Scholar 

  22. Hagan, M. T., & Menhaj, M. (1994). IEEE Transactions on Neural Networks, 5, 989–993. doi:10.1109/72.329697.

    Article  CAS  Google Scholar 

  23. Wilamowski, B. M., Iplikci, S., Kaynak, O., & Önder Efe, M. (2001). Proceedings of the IEEE International Joint Conference on Neural Network, 3, 1778–1782.

    Google Scholar 

  24. Chan, L. (1996). In S. Amari, L. Xu, L. W. Chan, I. King & K. S. Leung (Eds.), Progress in neural information processing (pp. 139–144). Heidelberg: Springer.

  25. Dong, Y., Shao, M., & Tai, X. (2008). Pattern Recognition Letters, 29, 938–949. doi:10.1016/j.patrec.2008.01.014.

    Article  Google Scholar 

  26. Cordon, O., & Herrera, F. (2000). IEEE Transactions on Fuzzy Systems, 8, 335–344. doi:10.1109/91.855921.

    Article  Google Scholar 

  27. Soo, E. L., Salleh, A. B., Rahman, R. N. Z. A., & Kamaruddin, K. (2003). Process Biochemistry, 39, 1511–1518. doi:10.1016/S0032-9592(03)00279-6.

    Article  Google Scholar 

  28. Radzi, S. M., Basri, M., Salleh, A. B., Ariff, A., Mohammad, R., Abdul Rahman, M. B., et al. (2005). Electronic Journal of Biotechnology, 8, 291–298. doi:10.2225/vol8-issue3-fulltext-4.

    Article  CAS  Google Scholar 

  29. Caussette, M., Marty, A., & Combes, D. (1997). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 58, 257–262. doi:10.1002/(SICI)1097-4660(199703)68:3<257::AID-JCTB619>3.0.CO;2-M.

    Article  Google Scholar 

  30. Villeneuve, P., Barea, B., Sarrazin, P., Davrieux, F., Boulanger, R., Caro, Y., et al. (2003). Enzyme and Microbial Technology, 33, 79–84. doi:10.1016/S0141-0229(03)00081-4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Basyaruddin Abdul Rahman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdul Rahman, M.B., Chaibakhsh, N., Basri, M. et al. Application of Artificial Neural Network for Yield Prediction of Lipase-Catalyzed Synthesis of Dioctyl Adipate. Appl Biochem Biotechnol 158, 722–735 (2009). https://doi.org/10.1007/s12010-008-8465-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8465-z

Keywords

Navigation