Skip to main content
Log in

Amperometric Phenol Biosensor Based on Horseradish Peroxidase Entrapped PVF and PPy Composite Film Coated GC Electrode

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Polyvinylferrocene (PVF) was used as a mediator for the fabrication of a horseradish peroxidase (HRP)-modified electrode to detect phenol derivatives via a composite polymeric matrix of conducting polypyrrole (PPy). Through an electropolymerization process, enzyme HRP was entrapped with PPy in a three-electrode system onto a glassy carbon electrode previously covered with PVF, resulting in a composite polymeric matrix. Steady-state amperometric measurements were performed at −200 mV vs. Ag/AgCl in aqueous phosphate buffer containing NaCl 0.1 M (pH 6.8) in the presence of hydrogen peroxide. The response of the HRP-modified PVF electrode was investigated for various phenol derivatives, which were 4-chlorophenol, phenol, catechol, hydroquinone, 2-aminophenol, pyrogallol, m-cresol, and 4-methoxyphenol. Analytical parameters for the fabricated PVF electrode were obtained from the calibration curves. The highest sensitivity was obtained from the calibration of 4-chlorophenol as 29.91 nA/μM. The lowest detection limit was found to be 0.22 μM (S/N = 3) for catechol, and the highest detection limit was found to be 0.79 μM (S/N = 3) for 4-methoxyphenol among the tested derivatives. The biosensor can reach 95% of steady-state current in about 5 min. The electrode is stable for 2 months at 4 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Stanca, S. E., & Popescu, I. C. (2004). Bioelectrochemistry, 64, 47. doi:10.1016/j.bioelechem.2004.02.004.

    Article  CAS  Google Scholar 

  2. Lacorte, S., Viana, P., Guillamon, M., Tauler, R., Vinhas, T., & Barceló, D. (2001). Environmental Monitoring, 3, 475. doi:10.1039/b104832p.

    Article  CAS  Google Scholar 

  3. Lapertot, M. E., & Pulgarin, C. (2006). Chemosphere, 65, 682. doi:10.1016/j.chemosphere.2006.01.046.

    Article  CAS  Google Scholar 

  4. Ding, Y., & Garcia, C. D. (2006). Analyst (London), 131, 208. doi:10.1039/b509405d.

    Article  CAS  Google Scholar 

  5. Hanscha, C., McKarnsb, S. C., Smith, C. J., & Doolittle, D. J. (2000). Chemico-Biological Interactions, 127, 61. doi:10.1016/S0009-2797(00)00171-X.

    Article  Google Scholar 

  6. Wang, S., Tan, Y., Zhao, D., & Liu, G. (2008). Biosensors & Bioelectronics, 23, 1781. doi:10.1016/j.bios.2008.02.014.

    Article  CAS  Google Scholar 

  7. Bayramoğlu, G., & Arıca, M. Y. (2008). Journal of Hazardous Materials, 156, 148. doi:10.1016/j.jhazmat.2007.12.008.

    Article  Google Scholar 

  8. Albanis, T. A., & Danis, T. G. (1999). International Journal of Environmental Analytical Chemistry, 74, 54. doi:10.1080/03067319908031416.

    Article  Google Scholar 

  9. Khalaf, K. D., Hasan, B. A., Morales-Rubio, A., & De La Guardia, M. (1994). Talanta, 41, 547. doi:10.1016/0039-9140(93)E0023-7.

    Article  CAS  Google Scholar 

  10. Kulys, J., & Vidziunaite, R. (2003). Biosensors & Bioelectronics, 18, 319. doi:10.1016/S0956-5663(02)00172-0.

    Article  CAS  Google Scholar 

  11. Kim, M. A., & Lee, W. Y. (2003). Analytica Chimica Acta, 479, 143. doi:10.1016/S0003-2670(02)01538-6.

    Article  CAS  Google Scholar 

  12. Vegaa, D., Agüía, L., González-Cortésa, A., Yáñez-Sedeño, P., & Pingarróna, J. M. (2007). Talanta, 71, 1031. doi:10.1016/j.talanta.2006.05.071.

    Article  Google Scholar 

  13. Wang, B., & Dong, I. (2000). Journal of Electroanalytical Chemistry, 487, 45. doi:10.1016/S0022-0728(00)00152-2.

    Article  CAS  Google Scholar 

  14. Rajesh, W., Takashima, T., & Kaneto, K. (2004). Sensors and Actuators B, 102, 271. doi:10.1016/j.snb.2004.04.028.

    Article  Google Scholar 

  15. Serradilla Razola, S., Lopez Ruiz, B., Mora Diez, N., Mark, H. B., & Kauffmann, J.-M. (2002). Biosensors & Bioelectronics, 17, 921. doi:10.1016/S0956-5663(02)00083-0.

    Article  Google Scholar 

  16. Retamab, R., Cabarcosb, E., Mecerreyesc, D., & López-Ruiz, B. (2004). Biosensors & Bioelectronics, 20, 1111. doi:10.1016/j.bios.2004.05.018.

    Article  Google Scholar 

  17. Chaubey, A., Gerarda, M., Singhala, R., Singhb, V. S., & Malhotraa, B. D. (2000). Electrochimica Acta, 46, 723. doi:10.1016/S0013-4686(00)00658-7.

    Article  CAS  Google Scholar 

  18. Mailley, P., Cummingsb, E. A., Mailleyb, S., Cosnierc, S., Egginsb, B. R., & McAdams, E. (2004). Bioelectrochemistry (Amsterdam, Netherlands), 63, 291. doi:10.1016/j.bioelechem.2003.11.008.

    CAS  Google Scholar 

  19. Sljukıc, B., Banks, C. E., Salter, C., Crossley, A., & Compton, R. C. (2006). Analyst (London), 131, 670. doi:10.1039/b601299j.

    Article  Google Scholar 

  20. Sen, S., Uygun Gok, A., Gulce, H., & Aldissi, M. (2008). Journal of Macromolecular Science Part A—Pure and Applied Chemistry, 45, 485. doi:10.1080/10601320801977806.

    Article  CAS  Google Scholar 

  21. Cem Ozer, B., Ozyoruk, H., Celebi, C.S., & Yıldız, A. (2007). Enzyme and Microbial Technology, 40, 262. doi:10.1016/j.enzmictec.2006.04.007.

    Article  Google Scholar 

  22. Kuralay, F., Özyörük, H., & Yıldız, A. (2006). Sensors and Actuators B, 114, 500. doi:10.1016/j.snb.2005.05.026.

    Article  Google Scholar 

  23. Gülce, H., Çelebi, S. S., Özyörük, H., & Yildiz, A. (1995). Journal of Electroanalytical Chemistry, 397, 217. doi:10.1016/0022-0728(95)04192-1.

    Article  Google Scholar 

  24. Gülce, H., Özyörük, H., & Yildiz, A. (1995). Electroalnalysis, 7, 178. doi:10.1002/elan.1140070214.

    Article  Google Scholar 

  25. Gülce, H., Özyörük, H., Çelebi, S., & Yildiz, A. (1995). Journal of Electroanalytical Chemistry, 394, 63. doi:10.1016/0022-0728(95)04013-E.

    Article  Google Scholar 

  26. Gundogan-Paul, M., Celebi, S. S., Ozyoruk, H., & Yildiz, A. (2002). Biosensors & Bioelectronics, 17, 875. doi:10.1016/S0956-5663(02)00072-6.

    Article  CAS  Google Scholar 

  27. Jureviciute, I., Bruckenstein, S., & Hillman, A. R. (2006). Electrochimica Acta, 51, 2351. doi:10.1016/j.electacta.2005.02.155.

    Article  CAS  Google Scholar 

  28. Sathe, M., Yu, L., Mo, Y. R., & Zeng, X. Q. (2005). Journal of the Electrochemical Society, 152, 94. doi:10.1149/1.1859817.

    Article  Google Scholar 

  29. Schlindwein, W. S., Kavvada, A., Latham, R. J., & Linford, R. G. (2000). Polymer International, 49, 953. doi:10.1002/1097-0126(200009)49:9<953::AID-PI406>3.0.CO;2-L.

    Article  CAS  Google Scholar 

  30. Topçu Sulak, M., Gökdoğan, Ö., Gülce, A., & Gülce, H. (2006). Biosensors & Bioelectronics, 21, 1719. doi:10.1016/j.bios.2005.08.008.

    Article  Google Scholar 

  31. Smith, T. W., Kuder, J. E., & Wychick, D. (1976). Journal of Polymer Science, 14, 2433.

    CAS  Google Scholar 

  32. Ngamma, O., Morrin, A., Moulton, S. E., Killard, A. J., Smyth, M. R., & Wallace, G. G. (2005). Synthetic Metals, 153, 185. doi:10.1016/j.synthmet.2005.07.259.

    Article  Google Scholar 

  33. Rosatto, S. S., Kubota, L. T., & Neto, G. O. (1999). Analytica Chimica Acta, 390, 65. doi:10.1016/S0003-2670(99)00168-3.

    Article  CAS  Google Scholar 

  34. Kemmegne Mbouguena, J., Ngamenib, E., & Walcarius, A. (2007). Biosensors & Bioelectronics, 23, 269. doi:10.1016/j.bios.2007.04.008.

    Article  Google Scholar 

  35. Sanchís, C., Salavagione, H. J., & Morallón, E. (2008). Journal of Electroanalytical Chemistry, 618, 67. doi:10.1016/j.jelechem.2008.02.024.

    Article  Google Scholar 

  36. Hasebe, K., & Osteryoung, J. (1975). Analytical Chemistry, 47, 2412–2417.

    Article  CAS  Google Scholar 

  37. Tsai, Y. C., & Cheng-Chiu, C. (2007). Sensors and Actuators B: Chemistry, 125, 10–14.

    Article  Google Scholar 

  38. Wilkolazka, A. J., Ruzgas, T., & Gorton, L. (2005). Talanta, 66, 1219–1224.

    Article  Google Scholar 

  39. Kim, M. A., & Lee, W. Y. (2003). Analytica Chimica Acta, 479, 143–150.

    Article  CAS  Google Scholar 

  40. Vianello, F., Ragusa, S., Cambria, M. T., & Rigo, A. (2006). Biosensors & Bioelectronics, 21, 2155–2160.

    CAS  Google Scholar 

  41. Li, Y. F., Liu, Z. M., Liu, Y. L., Yang, Y. H., Shen, G. L., & Yu, R. Q. (2006). Analytical Biochemistry, 349, 33–40.

    Article  CAS  Google Scholar 

  42. Chang, S. C., Rawson, K., & McNeil, C. J. (2002). Biosensors & Bioelectronics, 17, 1015–1023.

    Article  CAS  Google Scholar 

  43. Tembe, S., Inamdar, S., Haram, S., Karve, M., & D’Souza, S. F. (2007). Journal of Biotechnology, 128, 80–85.

    Article  CAS  Google Scholar 

  44. Fan, Q., Shan, D., Xue, H., He, Y., & Cosnier, S. (2007). Biosensors & Bioelectronics, 22, 816–821.

    Article  CAS  Google Scholar 

  45. Shan, D., Zhu, M., Han, E., Xue, H., & Cosnier, S. (2008). Biosensors & Bioelectronics, in press.

  46. Carrelero, V., Mena, M. L., Gonzales-Cortes, A., Yanez-Sedeno, P., & Pingarron, J. M. (2006). Biosensors & Bioelectronics, 22, 730–736.

    Article  Google Scholar 

  47. Kaneto, R. K. (2005). Current Applied Physics, 5, 178–183.

    Article  Google Scholar 

  48. Liu, Y., Qu, X., Guo, H., Chen, H., Liu, B., & Dong, S. (2006). Biosensors & Bioelectronics, 21, 2195–2201.

    Article  CAS  Google Scholar 

  49. Zhou, Y. L., Tian, R. H., & Zhi, J. F. (2007). Biosensors & Bioelectronics, 22, 822–828.

    Article  CAS  Google Scholar 

  50. Yu, J., Liu, S., & Ju, H. (2003). Biosensors & Bioelectronics, 19, 509–514.

    Article  CAS  Google Scholar 

  51. Korkut, S., Keskinler, B., & Erhan, E. (2008). Talanta, 76, 1147–1152.

    Article  CAS  Google Scholar 

  52. Koile, R. C., & Johnson, D. C. (1979). Analytical Chemistry, 51, 741–744.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the GYTE Research Fund for its financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bülent Keskinler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Topcu Sulak, M., Erhan, E. & Keskinler, B. Amperometric Phenol Biosensor Based on Horseradish Peroxidase Entrapped PVF and PPy Composite Film Coated GC Electrode. Appl Biochem Biotechnol 160, 856–867 (2010). https://doi.org/10.1007/s12010-009-8534-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8534-y

Keywords

Navigation