Skip to main content
Log in

Identification of Saccharomyces cerevisiae Genes Involved in the Resistance to Phenolic Fermentation Inhibitors

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Saccharomyces cerevisiae was exposed to inhibitory concentrations of the three phenolic phenylpropanoids: coniferyl aldehyde, ferulic acid, and isoeugenol. Deoxyribonucleic acid microarray analysis was employed as one approach to generate a set of candidate genes for deletion mutant analysis to determine the potential contribution of the corresponding gene products to the resistance against toxic concentrations of phenolic fermentation inhibitors. Three S. cerevisiae deletion mutants with increased sensitivity to coniferyl aldehyde were identified: yap1Δ, atr1Δ, and flr1Δ. The rate of reduction of coniferyl aldehyde to coniferyl alcohol decreased sixfold when the gene encoding the transcriptional activator Yap1p was deleted, and threefold when the Yap1p-controlled genes encoding Atr1p and Flr1p were deleted. Growth, glucose consumption, and ethanol formation progressed after a lag phase during which coniferyl aldehyde reduction and coniferyl alcohol formation occurred. The results link ATR1, FLR1, and YAP1 by their ability to confer resistance to coniferyl aldehyde and show that deletion of any of these three genes impairs the ability of S. cerevisiae to withstand coniferyl aldehyde and detoxify it by reduction. Furthermore, the results suggest that overexpression of ATR1, FLR1, and YAP1 is of interest for the construction of novel yeast strains with improved resistance against inhibitors in lignocellulose hydrolysates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Borneman, A. R., Chambers, P. J., & Pretorius, I. S. (2007). Trends in Biotechnology, 25, 349–355.

    Article  CAS  Google Scholar 

  2. Larsson, S., Quintana-Sáinz, A., Reimann, A., Nilvebrant, N.-O., & Jönsson, L. J. (2000). Applied Biochemistry and Biotechnology, 84–86, 617–632.

    Article  Google Scholar 

  3. Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P. F., et al. (2004). Phytochemistry Reviews, 3, 29–60.

    Article  CAS  Google Scholar 

  4. Ragauskas, A. J., Williams, C. K., Davison, B. H., et al. (2006). Science, 311, 484–489.

    Article  CAS  Google Scholar 

  5. Lynd, L. R., Laser, M. S., Bransby, D., Dale, B. E., Davison, B., Hamilton, R., et al. (2008). Nature Biotechnology, 26, 169–172.

    Article  CAS  Google Scholar 

  6. Wyman, C. E. (2007). Trends in Biotechnology, 25, 153–157.

    Article  CAS  Google Scholar 

  7. Galbe, M., & Zacchi, G. (2007). Advances in Biochemical Engineering, Biotechnology, 108, 41–65.

    CAS  Google Scholar 

  8. Ando, S., Arai, I., Kiyoto, K., & Hanai, S. (1986). Journal of Fermentation Technology, 64, 567–570.

    Article  CAS  Google Scholar 

  9. Jönsson, L. J., Palmqvist, E., Nilvebrant, N.-O., & Hahn-Hägerdal, B. (1998). Applied Microbiology and Biotechnology, 49, 691–697.

    Article  Google Scholar 

  10. Larsson, S., Reimann, A., Nilvebrant, N.-O., & Jönsson, L. J. (1999). Applied Biochemistry and Biotechnology, 77–79, 91–103.

    Article  Google Scholar 

  11. Martín, C., Galbe, M., Wahlbom, C. F., Hahn-Hägerdal, B., & Jönsson, L. J. (2002). Enzyme and Microbial Technology, 31, 274–282.

    Article  Google Scholar 

  12. Larsson, S., Cassland, P., & Jönsson, L. J. (2001). Applied and Environmental Microbiology, 67, 1163–1170.

    Article  CAS  Google Scholar 

  13. Larsson, S., Nilvebrant, N.-O., & Jönsson, L. J. (2001). Applied Microbiology and Biotechnology, 57, 167–174.

    CAS  Google Scholar 

  14. Sherman, F. (1991). Methods in Enzymology, 194, 3–21.

    Article  CAS  Google Scholar 

  15. Verduyn, C., Postma, E., Scheffers, W. A., & van Dijken, J. P. (1992). Yeast, 8, 501–517.

    Article  CAS  Google Scholar 

  16. Schmitt, M. E., Brown, T. A., & Trumpower, B. L. (1990). Nucleic Acids Research, 18, 3091–3092.

    Article  CAS  Google Scholar 

  17. Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., et al. (1999). Enzyme and Microbial Technology, 24, 151–159.

    Article  CAS  Google Scholar 

  18. Lee, J., Godon, C., Lagniel, G., Spector, D., Garin, J., Labarre, J., et al. (1999). Journal of Biological Chemistry, 274, 16040–16046.

    Article  CAS  Google Scholar 

  19. Rodrigues-Pousada, C. A., Nevitt, T., Menezes, R., Azevedo, D., Pereira, J., & Amaral, C. (2004). FEBS Letters, 567, 80–85.

    Article  CAS  Google Scholar 

  20. DeRisi, J. L., Iyer, V. R., & Brown, P. O. (1997). Science, 278, 680–686.

    Article  CAS  Google Scholar 

  21. André, B. (1995). Yeast, 11, 1575–1611.

    Article  Google Scholar 

  22. Coleman, S. T., Tseng, E., & Moye-Rowley, W. S. (1997). Journal of Biological Chemistry, 272, 23224–23230.

    Article  CAS  Google Scholar 

  23. Nguyen, D.-T., Alarco, A.-M., & Raymond, M. (2001). Journal of Biological Chemistry, 276, 1138–1145.

    Article  CAS  Google Scholar 

  24. Sá-Correira, I., dos Santos, S. C., Teixeira, M. C., Cabrito, T. R., & Mira, N. P. (2009). Trends in Microbiology, 17, 22–31.

    Article  CAS  Google Scholar 

  25. Viau, C., Pungartnik, C., Schmitt, M. C., Basso, T. S., Henriques, J. A., & Brendel, M. (2006). BioMetals, 19, 705–714.

    Article  CAS  Google Scholar 

  26. Tenreiro, S., Fernandes, A. R., & Sá-Correia, I. (2001). Biochemical and Biophysical Research Communications, 280, 216–222.

    Article  CAS  Google Scholar 

  27. Brôco, N., Tenreiro, S., Viegas, C. A., & Sá-Correia, I. (1999). Yeast, 15, 1595–1608.

    Article  Google Scholar 

  28. Teixeira, M. C., Dias, P. J., Simões, T., & Sá-Correira, I. (2008). Biochemical and Biophysical Research Communications, 367, 249–255.

    Article  CAS  Google Scholar 

  29. Le Crom, S., Devaux, F., Marc, P., Zhang, X., Moye-Rowley, W. S., & Jacq, C. (2002). Molecular and Cellular Biology, 22, 2642–2649.

    Article  CAS  Google Scholar 

  30. Jungwirth, H., Wendler, F., Platzer, B., Bergler, H., & Högenauer, G. (2000). European Journal of Biochemistry, 267, 4809–4816.

    Article  CAS  Google Scholar 

  31. Kanazawa, S., Driscoll, M., & Struhl, K. (1988). Molecular and Cellular Biology, 8, 664–673.

    CAS  Google Scholar 

  32. Oskouian, B., & Saba, J. D. (1999). Molecular and General Genetics, 261, 346–353.

    Article  CAS  Google Scholar 

  33. Mewes, H. W., Frishman, D., Gruber, C., Geier, B., Haase, D., Kaps, A., et al. (2000). Nucleic Acids Research, 28, 37–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Carl A. K. Borrebaeck for providing facilities for DNA microarray analysis. This work was supported by grants from The Swedish National Energy Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif J. Jönsson.

Additional information

Linda Sundström, née Björklund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sundström, L., Larsson, S. & Jönsson, L.J. Identification of Saccharomyces cerevisiae Genes Involved in the Resistance to Phenolic Fermentation Inhibitors. Appl Biochem Biotechnol 161, 106–115 (2010). https://doi.org/10.1007/s12010-009-8811-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8811-9

Keywords

Navigation