Skip to main content
Log in

Use of Cellulase Inhibitors to Produce Cellobiose

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The economics driving biorefinery development requires high value-added products such as cellobiose for financial feasibility. This research describes a simple technology for increasing cellobiose yields during lignocellulosic hydrolysis. The yield of cellobiose produced during cellulose hydrolysis was maximized by modification of reaction conditions. The addition of an inhibitor from the group that includes glucose oxidase, gluconolactone, and gluconic acid during cellulase hydrolysis of cellulose increased the amount of cellobiose produced. The optimal conditions for cellobiose production were determined for four factors; reaction time, cellulase concentration, cellulose concentration, and inhibitor concentration using a Box-Behnken experimental design. Gluconolactone in the cellulase system resulted in the greatest production of cellobiose (31.2%) from cellulose. The yield of cellobiose was 23.7% with glucose oxidase, similar to 21.9% with gluconic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nakamura, S., Oku, T., & Ichinose, M. (2004). Bioavailability of cellobiose by tolerance test and breath hydrogen excretion in humans. Nutrition, 20, 979–983.

    Article  CAS  Google Scholar 

  2. Sanz, M. L., Gibson, G. R., & Rastall, R. A. (2005). Influence of disaccharide structure on prebiotic selectivity in vitro. Journal of Agricultural and Food Chemistry, 53, 5192–5199.

    Article  CAS  Google Scholar 

  3. Yamazaki, Y., & Ichiro, I. (2007). Enterobacteria activator containing cellooligosaccharides, their use for inhibition of Clostridium perfringens, and pharmaceuticals and foods containing them. Japanese Kokai Tokkyo Koho issued on December 27, 2007.

  4. Calabresse, C., Venturini, L., Ronco, G., Villa, P., Chomienne, C., & Belpomme, D. (1993). Butyric acid and its monosaccharide ester induce apoptosis in the HL-60 cell line. Biochemical and Biophysical Research Communications, 195, 31–38.

    Article  CAS  Google Scholar 

  5. Riggs, M. G., Whittaker, R. G., Neumann, J. R., & Ingram, V. M. (1977). n-Butyrate causes histone modification in HeLa and friend erythroleukemia cells. Nature, 268, 462–463.

    Article  CAS  Google Scholar 

  6. Yamazaki, Y., & Ichiro, I. (2008). Cellooligosaccharides for prevention and treatment of life style-related disease. Japanese Kokai Tokko Koho issued on January 10, 2008.

  7. Adsul, M., Khire, J., Bastawde, K., & Gokhale, D. (2007). Production of lactic acid from cellobiose and cellotriose by Lactobacillus delbrueckii Mutant Uc-3. Applied and Environmental Microbiology, 73, 5055–5057.

    Article  CAS  Google Scholar 

  8. Kim, M. (2008). Enzymatic production and biological activities of cellobio-oligosaccharides from lignocelluloses. Ph.D. dissertation, Louisiana State University, Louisiana, USA.

  9. Lee, S., Park, K., & Robyt, J. F. (2001). Inhibition of β-glucosidases by acarbose analogues containing cellobiose and lactose structures. Carbohydrate Research, 331, 13–18.

    Article  CAS  Google Scholar 

  10. Morales, M. A. A., Remaud-Simeon, M., Willemot, R., Vignon, M. R., & Monsan, P. (2001). Novel oligosaccharides synthesized from sucrose donor and cellobiose acceptor by alternansucrase. Carbohydrate Research, 331, 403–411.

    Article  Google Scholar 

  11. Franklin, K. R., White, M. S., Kowalski, A. J., Parrott, D. T., & Rowe, K. E. (2001). Cosmetic compositions. US patent issued on June 19, 2001.

  12. Homma, T., Fujii, M., Mori, J., Kawakami, T., Kuroda, K., & Taniguchi, M. (1993). Production of cellobiose by enzymatic hydrolysis: removal of β-glucosidase from cellulase by affinity precipitation using chitosan. Biotechnology and Bioengineering, 41, 405–410.

    Article  CAS  Google Scholar 

  13. Henrissat, B., Vigny, B., Buleon, A., & Warren, R. A. J. (1998). A scheme for designating enzymes that hydrolyses the polysaccharides in the cell walls of plants. FEBS Letters, 425, 352–354.

    Article  CAS  Google Scholar 

  14. Holtzapple, M., Cognata, M., Shu, Y., & Hendrickson, C. (1990). Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnology and Bioengineering, 36, 275–287.

    Article  CAS  Google Scholar 

  15. Philippidis, G. P., Smith, T. K., & Wyman, C. E. (1993). Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process. Biotechnical Engineering, 41, 846–853.

    CAS  Google Scholar 

  16. Day, D. F., Dequeiroz, G., Chung, C.-H., & Kim, M. (2008). By-products from bagasse. International Sugar Journal, 110, 7–11.

    CAS  Google Scholar 

  17. NREL; http://www.bioproducts-bioenergy.gov/pdfs/bioproductsopportunitiesreprotfinal.pdf. Accessed on June 6, 2005.

  18. Box, G. E. P., & Behnken, D. W. (1960). Some new three-level design for the study of quantitative variables. Technometrics, 2, 455–475.

    Article  Google Scholar 

  19. Segel, I. H. (1976). Enzymes. In I. H. Segel (Ed.), Biochemical calculations: how to solve mathematical problems in general biochemistry (2nd ed., pp. 265–266). New York: Wiley.

    Google Scholar 

  20. Dixon, X., Webb, E. C., Thorne, C. J. R., & Tipton, K. F. (1979). Enzymes (3rd ed., pp. 1–47). New York: Academic Press.

    Google Scholar 

  21. Gusakov, A. V., & Sinitsyn, A. P. (1992). A theoretical analysis of cellulase product inhibition: effect of cellulase binding constant, enzymes/substrate ration, and β-glucosidase activity on the inhibition pattern. Biotechnology and Bioengineering, 40, 663–671.

    Article  CAS  Google Scholar 

  22. Dekker, R. F. H. (1988). Inhibitors of Trichoderma reesei β-glucosidase activity derived from autohydorolysis-exploded Eucalyptus regnans. Applied Microbiology and Biotechnology, 29, 593–598.

    Article  Google Scholar 

  23. Montero, M. A., & Romeu, A. (1992). Kinetic study on the β-glucosidase-catalyzed reaction of Trichoderma viride cellulase. Applied Microbiology and Biotechnology, 38, 350–353.

    Article  CAS  Google Scholar 

  24. Tanaka, T., & Oi, S. (1985). Cellotriose synthesis using d-glucose as a starting material by two step reactions of immobilized β-glucosidases. Agricultural and Biological Chemistry, 49, 1267–1273.

    CAS  Google Scholar 

  25. Tanaka, M. (2000). Continuous production of cellobiose by cellulase hydrolysis with cellulase and theoretical consideration on the hydrolysis process. Bulletin of the Okayama University of Science a Natural Science, 36, 217–223.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donal F. Day.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M., Day, D.F. Use of Cellulase Inhibitors to Produce Cellobiose. Appl Biochem Biotechnol 162, 1379–1390 (2010). https://doi.org/10.1007/s12010-010-8915-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8915-2

Keywords

Navigation