Skip to main content
Log in

Biodiesel Preparation from Jatropha curcas Oil Catalyzed by Hydrotalcite Loaded With K2CO3

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This paper discusses the synthesis of biodiesel catalyzed by solid base of K2CO3/HT using Jatropha curcas oil as feedstock. Mg–Al hydrotalcite was prepared using co-precipitation methods, in which the molar ratio of Mg to Al was 3:1. After calcined at 600 °C for 3 h, the Mg–Al hydrotalcite and K2CO3 were grinded and mixed according to certain mass ratios, in which some water was added. The mixture was dried at 65 °C, and after that it was calcined at 600 °C for 3 h. Then, this Mg–Al hydrotalcite loaded with potassium carbonate was obtained and used as catalyst in the experiments. Analyses of XRD and SEM characterizations for catalyst showed the metal oxides formed in the process of calcination brought about excellent catalysis effect. In order to achieve the optimal technical reaction condition, five impact factors were also investigated in the experiments, which were mass ratio, molar ratio, reaction temperature, catalyst amount and reaction time. Under the best condition, the biodiesel yield could reach up to 96%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Martino, D. S., Riccardo, T., Lu, P. M., & Elio, S. (2008). Energy Fuel, 22, 207–217.

    Article  Google Scholar 

  2. Ma, F., & Hanna, M. A. (1999). Biodiesel production: a review. Bioresource Technology, 70, 1–15.

    Article  CAS  Google Scholar 

  3. Srivastava, A., & Prasad, R. (2000). Triglycerides-based diesel fuels. Renewable Sustain Energy Reviews, 4, 111–133.

    Article  CAS  Google Scholar 

  4. Van Gerpen, J. (2005). Biodiesel processing and production. Fuel Processing Technology, 86, 1097–1107.

    Article  Google Scholar 

  5. Kegl, B. (2007). NOx and particulate matter (PM), emissions reduction potential by biodiesel usage. Energy Fuel, 21, 3310–3316.

    Article  CAS  Google Scholar 

  6. Liu, Y. J., Lotero, E., Goodwin, J. G., Jr., & Mo, X. H. (2007). Transesterification of poultry fat with methanol using Mg–Al hydrotalcite derived catalysts. Applied Catalysis. A, General, 331, 138–148.

    Article  CAS  Google Scholar 

  7. Liu, X. J., He, H. Y., Wang, Y. J., & Zhu, S. L. (2007). Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst. Catalysis Communications, 8, 1107–1111.

    Article  CAS  Google Scholar 

  8. Gao, L. J., Xu, B., Xiao, G. M., & Lv, J. H. (2008). Transesterification of palm oil with methanol to biodiesel over a KF/hydrotalcite solid catalyst. Energy Fuel, 22, 3531–3535.

    Article  CAS  Google Scholar 

  9. Sanchez, F., & Vasudevan, P. T. (2006). Enzyme catalyzed production of biodiesel from olive oil. Applied Biochemistry Biotechnology, 135, 1–14.

    Article  CAS  Google Scholar 

  10. de Oliveira, J., Leite, P. M., de Souza, L. B., Mello, V. M., Silva, E. C., Rubim, J. C., et al. (2009). Characteristics and composition of Jatropha gossypiifolia and Jatropha curcas L. oils and application for biodiesel production. Biomass Bioenergy, 33, 449–453.

    Article  Google Scholar 

  11. Makkar, H., Maes, J., de Greyt, W., & Becker, K. (2009). Removal and degeneration of phorbol esters during pre-treatment and transesterification of Jatropha curcas oil. Journal of the American Oil Chemist’s Society, 86, 173–181.

    Article  CAS  Google Scholar 

  12. Suwannakarn, K., Lotero, E., Ngaosuwan, K., & Goodwin, J. G., Jr. (2009). Simultaneous free fatty acid esterification and triglyceride transesterification using a solid acid catalyst with in situ removal of water and unreacted methanol. Industrial & Engineering Chemistry Research, 48, 2810–2818.

    Article  CAS  Google Scholar 

  13. Wu, Q., Chen, H., Han, M. H., Wang, D. Z., & Wang, J. F. (2007). Transesterification of cottonseed oil catalyzed by Brønsted acidic ionic liquids. Industrial & Engineering Chemistry Research, 46, 7955–7960.

    Article  CAS  Google Scholar 

  14. Ni, J., & Meunier, F. C. (2007). Esterification of free fatty acids in sunflower oil over solid acid catalysts using batch and fixed bed-reactors. Applied Catalysis. A, General, 333, 122–130.

    Article  CAS  Google Scholar 

  15. Royon, D., Daz, M., Ellenrieder, G., & Locatelli, S. (2007). Enzymatic production of biodiesel from cotton seed oilusing t-butanol as a solvent. Bioresource Technology, 98, 648–653.

    Article  CAS  Google Scholar 

  16. Orcaire, O., Buisson, P., & Pierre, A. C. (2006). Application of silica aerogel encapsulated lipases in the synthesis of biodiesel by transesterification reactions. Journal of Molecular Catalysis. B, Enzymatic, 42, 106–113.

    Article  CAS  Google Scholar 

  17. Shah, S., Sharma, S., & Gupta, M. N. (2004). Biodiesel preparation by lipase-catalyzed transesterification of jatropha oil. Energy Fuel, 18, 154–159.

    Article  CAS  Google Scholar 

  18. Georgogianni, K. G., Katsoulidis, A. K., Pomonis, P. J., Manos, G., & Kontominas, M. G. (2009). Transesterification of rapeseed oil for the production of biodiesel using homogeneous and heterogeneous catalysis. Fuel Processing Technology, 90, 1016–1022.

    Article  CAS  Google Scholar 

  19. Georgogianni, K. G., Katsoulidis, A. K., Pomonis, P. J., & Kontominas, M. G. (2009). Transesterification of soybean frying oil to biodiesel using heterogeneous catalysts. Fuel Processing Technology, 90, 671–676.

    Article  CAS  Google Scholar 

  20. Matassoli, A. L. F., Corrêa, I. N. S., Portilho, M. F., Veloso, C. O., & Langone, M. A. P. (2009). Enzymatic synthesis of biodiesel via alcoholysis of palm oil. Applied Biochemistry Biotechnology, 155, 347–355.

    CAS  Google Scholar 

  21. Silva, C., Weschenfelder, T. A., Rovani, S., Corazza, F. C., Corazza, M. L., Dariva, C., et al. (2007). Continuous production of fatty acid ethyl esters from soybean oil in compressed ethanol. Industrial & Engineering Chemistry Research, 46, 5304–5309.

    Article  CAS  Google Scholar 

  22. Yin, J. Z., Xiao, M., & Song, J. B. (2008). Biodiesel from soybean oil in supercritical methanol with co-solvent. Energy Conversion Management, 49, 908–912.

    CAS  Google Scholar 

  23. Saka, S., & Kusdiana, D. (2001). Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel, 80, 225–231.

    Article  CAS  Google Scholar 

  24. Kusdiana, D., & Saka, S. (2001). Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel, 80, 693–698.

    Article  CAS  Google Scholar 

  25. Kusdiana, D., & Saka, S. (2004). Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresoure Technology, 91, 289–295.

    Article  CAS  Google Scholar 

  26. Warabi, Y., Kusdiana, D., & Saka, S. (2004). Biodiesel fuel from vegetable oil by various supercritical alcohols. Applied Biochemistry Biotechnology, 113, 793–801.

    Article  Google Scholar 

  27. Dasari, M. A., Goff, M. J., & Suppes, G. J. (2003). Non-catalytic alcoholysis kinetics of soybean oil. Journal of the American Oil Chemist’s Society, 80, 189–192.

    Article  CAS  Google Scholar 

  28. Demirbas, A. (2002). Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Conversion Management, 43, 2349–2356.

    Article  CAS  Google Scholar 

  29. Cao, W. L., Han, H. W., & Zhang, J. C. (2005). Preparation of biodiesel from soybean oil using supercritical methanol and co-solvent. Fuel, 84, 347–351.

    Article  CAS  Google Scholar 

  30. Leadbeater, N. E., & Stencel, L. M. (2006). Fast, easy preparation of biodiesel using microwave heating. Energy Fuel, 20, 2281–2283.

    Article  CAS  Google Scholar 

  31. Zhu, H. P., Wu, Z. B., Chen, Y. X., Zhang, P., Duan, S. J., Liu, X. H., et al. (2006). Preparation of biodiesel catalyzed by solid super base of calcium oxide and its refining process. Chinese Journal of Catalyst, 27, 391–396.

    Article  CAS  Google Scholar 

  32. Vyas, A. P., Subrahmanyam, N., & Patel, P. A. (2009). Production of biodiesel through transesterification of Jatropha oil using KNO3/Al2O3 solid catalyst. Fuel, 88, 625–628.

    Article  CAS  Google Scholar 

  33. Brito, A., Borges, M. E., Garin, M., & Hernandez, A. (2009). Biodiesel production from waste oil using Mg–Al layered double hydroxide catalyst. Energy Fuel, 23, 2952–2958.

    Article  CAS  Google Scholar 

  34. Cantrell, D. G., Gillie, L. J., Lee, A. F., & Wilson, K. (2005). Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis. Applied Catalysis. A, General, 287, 183–190.

    Article  CAS  Google Scholar 

  35. Trakarnpruk, W., & Porntangjitlikit, S. (2008). Palm oil biodiesel synthesized with potassium loaded calcined hydrotalcite and effect of biodiesel blend on elastomer properties. Renewable Energy, 33, 1558–1563.

    Article  CAS  Google Scholar 

  36. Xi, Y. Z., & Davis, R. J. (2008). Influence of water on the activity and stability of activated Mg–Al hydrotalcites for the transesterification of tributyrin with methanol. Journal of Catalysis, 254, 190–197.

    Article  CAS  Google Scholar 

  37. Zeng, H. Y., Feng, Z., Deng, X., & Li, Y. Q. (2008). Activation of Mg–Al hydrotalcite catalysts for transesterification of rape oil. Fuel, 87, 3071–3076.

    Article  CAS  Google Scholar 

  38. Antunes, W. M., Veloso, C. O., Henriques, C. A. (2008). Transesterification of soybean oil with methanol catalyzed by basic solids. Catalysis Today, 133–135, 548–554.

  39. Gubitz, G. M., Mittelbach, M., & Trabi, M. (1999). Exploitation of the tropical oil seed plant Jatropha curcas L. Bioresource Technology, 67, 73–82.

    Article  CAS  Google Scholar 

  40. Cavani, F., Trifiro, F., & Vaccari, A. (1991). Catalysis Today, 11, 173.

    Article  CAS  Google Scholar 

  41. Berchmans, H. J., & Hirata, S. (2008). Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresource Technology, 99, 1716–1721.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to National High Technology Research and Development Program of China (No.2009AA03Z222 and No.2009AA05Z437) and “Six Talents Pinnacle Program” (No.2008028) of Jiangsu Province of China for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guomin Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teng, G., Gao, L., Xiao, G. et al. Biodiesel Preparation from Jatropha curcas Oil Catalyzed by Hydrotalcite Loaded With K2CO3 . Appl Biochem Biotechnol 162, 1725–1736 (2010). https://doi.org/10.1007/s12010-010-8953-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8953-9

Keywords

Navigation