Skip to main content
Log in

Improved Synthesis of (S)-1-Phenyl-2-Propanol in High Concentration with Coupled Whole Cells of Rhodococcus erythropolis and Bacillus subtilis on Preparative Scale

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bioreduction of 1-phenyl-2-propanone to prepare (S)-1-phenyl-2-propanol, a useful pharmaceutical intermediate, was performed with growing cells of Rhodococcus erythropolis JX-021, giving 14 mM (1.9 g/L) product in 99% e.e. at 5 h in the catalysis of 15 mM substrate. The reduction stopped afterwards due to strong inhibition of substrate and formed product, a problem that is often encountered in biotransformation. While the substrate inhibition was solved by stepwise feeding, product inhibition was tackled by different methods: repeated removal of the product by centrifugation, by absorption with Amberlite XAD-7 resin, and by the use of dodecanol as the second phase gave the final product in 58, 68, and 61 mM in the catalysis of 80 mM substrate, respectively. The inhibition was caused by the partial permeabilization of cell membrane of R. erythropolis JX-021, and addition of NADPH or glucose 6-phosphate to such cell culture retained the reduction activity. Therefore, higher productivity in the reduction of 1 with resting cells of R. erythropolis JX-021 was achieved through cofactor regeneration and recycling by the addition of glucose and permeabilized cells of Bacillus subtilis BGSC 1A1 containing a glucose dehydrogenase, giving the product in 62 mM without addition of cofactor and 78 mM with the addition of 0.01 mM NADP+ in the catalysis of 120 mM substrate. The product e.e. retained 99% during the process which showed industrial possibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nakamura, K., & Matsuda, T. (2002). In K. Drauz & H. Waldmann (Eds.), Enzyme catalysis in organic synthesis (Vol. III, pp. 991–1047). Hoboken: Wiley-VCH. Chap 15.

    Chapter  Google Scholar 

  2. Faber, K. (1997). Biotransformations in organic chemistry, chap. 2.2 (pp. 160–200). Berlin: Springer.

    Google Scholar 

  3. Pereira, R. S. (1998). Critical Reviews in Biotechnology, 18, 25–64.

    Article  Google Scholar 

  4. Kroutil, W., Mang, H., Edegger, K., & Faber, K. (2004). Current Opinion in Chemical Biology, 8, 120–126.

    Article  CAS  Google Scholar 

  5. Stampfer, W., Kosjek, B., Moitzi, C., Kroutil, W., & Faber, K. (2002). Angewandte Chemie International Edition, 41, 1014–1017.

    Article  CAS  Google Scholar 

  6. Yoshihiko, Y., Noriyuki, K., Junzo, H., Masaru, W., Michihiko, K., & And Shimizu, S. (2000). Bioscience, Biotechnology, and Biochemistry, 64, 1430–1436.

    Article  Google Scholar 

  7. Rodriguez, S., Schroeder, K. T., Kayser, M. M., & Stewart, J. D. (2000). The Journal of Organic Chemistry, 65, 2586–2587.

    Article  CAS  Google Scholar 

  8. Zhang, J., Duetz, W. A., Witholt, B., & Li, Z. (2004). Chemical Communications, 2120–2121.

  9. Chenault, H. K., & Whitesides, G. M. (1987). Applied Biochemistry and Biotechnology, 14, 147–197.

    Article  CAS  Google Scholar 

  10. Donk, W. A., & Zhao, H. M. (2003). Current Opinion in Biotechnology, 14, 421–426.

    Article  Google Scholar 

  11. Wong, C. H., & Whitesides, G. M. (1981). Journal of the American Chemical Society, 103, 4890–4899.

    Article  CAS  Google Scholar 

  12. Yang, W., Xu, J. H., Pan, J., Xu, Y., & Wang, Z. L. (2008). Biochemical Engineering Journal, 42, 1–5.

    Article  Google Scholar 

  13. Kizaki, N., Yasohara, Y., Hasegawa, J., Wada, M., Kataoka, M., & Shimizu, S. (2001). Applied Microbiology and Biotechnology, 55, 590–595.

    Article  CAS  Google Scholar 

  14. Kataoka, M., Yamamoto, K., Kawabata, H., Wada, M., Kita, K., Yanase, H., et al. (1999). Applied Microbiology and Biotechnology, 51, 486–490.

    Article  CAS  Google Scholar 

  15. Zhang, J., & Witholt, B., Li, Z. (2006). Chemical Communications, 398–400.

  16. Zhang, J., Witholt, B., & Li, Z. (2006). Advanced Synthesis & Catalysis, 348, 429–433.

    Article  CAS  Google Scholar 

  17. Gbewonyo, K., Buckland, B. C., & Lilly, M. D. (1991). Biotechnology and Bioengineering, 37, 1101–1107.

    Article  CAS  Google Scholar 

  18. Roddick, F. A., & Britz, M. L. (1997). Journal of Chemical Technology and Biotechnology, 69, 383–391.

    Article  CAS  Google Scholar 

  19. Martin, H., Suske, W., Schmid, A., Engesser, K.-H., Kohler, H.-P., Witholt, B., et al. (1998). Journal of Molecular Catalysis B, Enzymatic, 5, 87–93.

    Article  Google Scholar 

  20. Schmid, A., Sonnleitner, B., & Witholt, B. (1998). Biotechnology and Bioengineering, 60, 10–23.

    Article  CAS  Google Scholar 

  21. Buhler, B., Bollhalder, I., Hauer, B., Witholt, B., & Schmid, A. (2003). Biotechnology and Bioengineering, 81, 683–694.

    Article  CAS  Google Scholar 

  22. Filho, M. V., Stillger, T., Muller, M., Liese, A., & Wandrey, C. (2003). Angewandte Chemie International Edition, 42, 2993–2996.

    Article  Google Scholar 

  23. Bracher, F., & Litz, T. (1994). Archives de Pharmacie, 327, 591–593.

    Article  CAS  Google Scholar 

  24. Erdelyi, B., Szabo, A., Seres, G., Birincsik, L., Ivanics, J., Szatzker, G., et al. (2006). Tetrahedron: Asymmetry, 17, 268–274.

    Article  CAS  Google Scholar 

  25. Kruse, W., Kragl, U., Wandrey, C. (1996) DE 4436149 A1.

Download references

Acknowledgement

This work was supported by the Zhejiang Provincial Natural Science Foundation (grant no. y4080311)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Zhong Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, JZ., Li, H. & Zhang, J. Improved Synthesis of (S)-1-Phenyl-2-Propanol in High Concentration with Coupled Whole Cells of Rhodococcus erythropolis and Bacillus subtilis on Preparative Scale. Appl Biochem Biotechnol 162, 2075–2086 (2010). https://doi.org/10.1007/s12010-010-8983-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8983-3

Keywords

Navigation