Skip to main content
Log in

Kinetic Analysis and Modeling of Daptomycin Batch Fermentation by Streptomyces roseosporus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, Streptomyces roseosporus was subjected to helium–neon (He–Ne) laser (632.8 nm) irradiation to improve the production ability of extracellular antibiotic daptomycin. Under the optimum irradiation dosage of 18 mW for 22 min, a stable positive mutant strain S. roseosporus LC-54 was obtained. The maximum A21978C (daptomycin is a semisynthetic antimicrobial substance derived from the A21978C complex) yield of this mutant strain was 296 mg/l, which was 146% higher than that of the wild strain. The mutant strain grew more quickly and utilized carbohydrate sources more efficiently than the wild strain. The batch culture kinetics was investigated in a 7 l bioreactor. The logistic equation for growth, the Luedeking–Piret equation for daptomycin production, and Luedeking–Piret-like equations for carbon substrate consumption were established. This model appeared to provide a reasonable description for each parameter during the growth phase and fitted fairly well with the experiment data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fung, H. B., Chang, J. Y., & Kuczynski, S. (2003). Drugs, 63, 1459–1480.

    Article  CAS  Google Scholar 

  2. Nichols, R. L. (1999). The Journal of Antimicrobial Chemotherapy, 44, 19–23.

    Article  CAS  Google Scholar 

  3. Tally, F. P., & DeBruin, M. F. (2000). The Journal of Antimicrobial Chemotherapy, 46, 523–526.

    Article  CAS  Google Scholar 

  4. Silverman, J. A. (2001). Antimicrobial Agents and Chemotherapy, 45, 1799–1802.

    Article  CAS  Google Scholar 

  5. Sader, H. S., & Streit, J. M. (2006). Clinical Microbiology and Infection, 9, 844–852.

    Article  Google Scholar 

  6. Straus, S. K., & Hancock, R. E. W. (2006). Biochimica et Biophysica Acta—Biomembranes, 9, 1215–1223.

    Article  Google Scholar 

  7. Debono, M., Barnhart, M., Carrell, C. B., Hoffman, J. A., Occolowitz, J. L., Abbott, B. J., et al. (1987). The Journal of Antibiotics, 40, 761–777.

    CAS  Google Scholar 

  8. Debono, M., Abbott, B. J., & Molloy, R. M. (1988). The Journal of Antibiotics, 41, 1093–1105.

    CAS  Google Scholar 

  9. Karu, T., Tiphlova, O., Esenaliev, R., & Letokhov, V. (1994). Journal of Photochemistry and Photobiology. B: Biology, 24, 155–161.

    Article  CAS  Google Scholar 

  10. Sorin, A., Constantin, S., Dana, G., Ionica, N., Geta, S., & Ion, I. S. (2000) In: Proceedings of SPIE-The International Society for Optical Engineering, pp 758–763.

  11. Kohli, R., & Gupta, P. K. (2003). Journal of Photochemistry and Photobiology. B: Biology, 69, 161–167.

    Article  CAS  Google Scholar 

  12. Trilli, A. (1990). Microbial growth dynamics. Oxford: IRL.

    Google Scholar 

  13. Trilli, A., Crossly, M. V., & Kontakou, M. (1987). Biotechnological Letters, 9, 765–770.

    Article  CAS  Google Scholar 

  14. Van Handel, E. (1985). Journal of the American Mosquito Control Association, 1, 299–300.

    Google Scholar 

  15. Bu’Lock, J. D. (1961). Advances in Applied Microbiology, 3, 293–342.

    Article  Google Scholar 

  16. Heijinen, J. J., Roels, J. A., & Stouthamer, A. H. (1979). Biotechnology and Bioengineering, 21, 2175–2201.

    Article  Google Scholar 

  17. Goudar, C. T., & Joeris, K. (2005). Biotechnology Progress, 4, 1109–1118.

    Google Scholar 

  18. Martin, J. F., & McDaniel, L. E. (1975). Biotechnology and Bioengineering, 17, 925–938.

    Article  CAS  Google Scholar 

  19. Huber, F. M., & Piper, R. L. (1988). Journal of Biotechnology, 7, 283–292.

    Article  CAS  Google Scholar 

  20. McGowan, K. M., Long, S. D., & Pekala, P. H. (1995). Pharmacology and Therapeutics, 3, 465–505.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support provided by the National Natural Science Foundation of China (no. 20706042), National 973 Project of China (2007CB714302), National 863 Project of China (2007AA02Z200), and Program of Introducing Talents of Discipline to Universities (no. B06006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinggele Caiyin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, W., Fan, J., Wen, J. et al. Kinetic Analysis and Modeling of Daptomycin Batch Fermentation by Streptomyces roseosporus . Appl Biochem Biotechnol 163, 453–462 (2011). https://doi.org/10.1007/s12010-010-9053-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9053-6

Keywords

Navigation