Skip to main content
Log in

Strain Improvement of Streptomyces roseosporus for Daptomycin Production by Rational Screening of He–Ne Laser and NTG Induced Mutants and Kinetic Modeling

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To improve the yield of daptomycin by Streptomyces roseosporus, a method of rational screening of He–Ne Laser and N-methyl-N-nitro-N-nitrosoguanidine (NTG)-induced mutants was employed in this work. Under the optimal mutagenesis conditions (NTG of 0.3 mg/L, 40 min; irradiation at 15 mW, 15 min), two steps of combined mutations were conducted. Screening of mutants was done according to the individual resistance to n-decanoic acid and daptomycin. A mutant strain LC-54-16, with the highest daptomycin production ability of 616 mg/L was obtained, which was over 5 times higher than the wild strain LC-52-6. The transcription levels of the main dpt genes in the mutant were approximately five times higher than those in the wild. The superiority of the mutant to the wild strain was further proved by the comparative studies on the kinetics of the mutant and the wild. The decrease of the inhibition of substrate and product was further confirmed, as well. It was concluded that the method of rational screening of He–Ne Laser and NTG-induced mutants could efficiently improve the daptomycin production ability of S. roseosporus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Xmax (gL−1):

Maximum cell dry weight

X0 (gL−1):

Initial cell dry weight

μmax (h−1):

Maximum specific growth rate

K S (gL−1):

Saturation coefficient of glucose

Pmax (g L−1):

Maximum daptomycin titer

α:

Growth associated product formation rate constant

β (h−1):

Non-growth-associated product formation rate constant

YX/S (gg−1):

Cell yield coefficient of glucose

YP/S (gg−1):

Product yield coefficient of glucose

m (gg−1):

Cell maintenance coefficient

Smax (gL−1):

Maximum glucose concentration at which specific growth rate is zero

n S :

Exponent of glucose repression

\( S_{de}^{{ \max }}\left( {{\hbox{g}}{{\hbox{L}}^{ - {1}}}} \right) \) :

Maximum n-decanoic acid concentration at which specific growth rate is zero

n de :

Exponent of n-decanoic acid repression

\( S_{da}^{{ \max }}\left( {{\hbox{g}}{{\hbox{L}}^{ - {1}}}} \right) \) :

Maximum n-decanoic acid concentration at which specific growth rate is zero

n da :

Exponent of daptomycin repression

\( {Y_{P/{S_{de}}}} \) :

Product yield coefficient of n-decanoic acid

X (gL−1):

Biomass concentration

S (gL−1):

Glucose concentration

S de (gL−1):

n-decanoic acid concentration

P (gL−1):

Daptomycin concentration

References

  1. Debono, M., Barnhart, M., Carrell, C. B., Hoffmann, J. A., Occolowitz, J. L., Abbott, B. J., et al. (1987). The Journal of Antibiotics, 40, 761–777.

    CAS  Google Scholar 

  2. Huber, F. M., Pieper, R. L., & Tietz, A. J. (1988). Journal of Biotechnology, 7, 283–292.

    Article  CAS  Google Scholar 

  3. Zhou, P. F., Wang, Y. W., Guo, M., Wang, H. H., & Xie, J. P. (2009). Review of Medical Microbiology, 20, 12–18.

    CAS  Google Scholar 

  4. Chamberlain, R. S., Culshaw, D. L., Donovan, B. J., & Lamp, K. C. (2009). Surgery, 14, 6316–6324.

    Google Scholar 

  5. Arbeit, R. D., Maki, D., Tally, F. P., Campanaro, E., & Eisenstein, B. I. (2004). Clinical Infectious Diseases, 38, 1673–1681.

    Article  CAS  Google Scholar 

  6. Kirkpatrick, P., Raja, A., LaBonte, J., & Lebbos, J. (2003). Nature Reviews. Drug Discovery, 2, 943–944.

    Article  Google Scholar 

  7. Miao, V., Coeffet-LeGal, M. F., Brian, P., Brost, R., Penn, J., Whiting, A., et al. (2005). Microbiology-Sgm, 151, 1507–1523.

    Article  CAS  Google Scholar 

  8. Yeats, C., Bentley, S., & Bateman, A. (2003). BMC. Microbiology. 2003. Available from: http://www.biomedcentral.com/1471-2180/3/3. Accessed February 6, 2003.

  9. Nguyen, K. T., Kau, D., Gu, J. Q., Brian, P., Wrigley, S. K., Baltz, R. H., et al. (2006). Molecular Microbiology, 61, 1294–1307.

    Article  CAS  Google Scholar 

  10. Olano, C., Lombo, F., Mendez, C., & Salas, J. A. (2008). Metabolic Engineering, 10, 281–292.

    Article  CAS  Google Scholar 

  11. Khaliq, S., Akhtar, K., Ghauri, M. A., Iqbal, R., Khalid, A. M., & Muddassar, M. (2009). Microbiological Research, 164, 469–477.

    Article  CAS  Google Scholar 

  12. Wu, Z. F., Bajpai, R. K., & Yan, W. (2008). Biocatalysis and Biotransformation, 26, 444–449.

    Article  CAS  Google Scholar 

  13. Kohli, R., Bose, B., & Gupta, P. K. (2001). Journal of Photochemistry and Photobiology. B: Biology, 60, 136–142.

    Article  CAS  Google Scholar 

  14. Kumar, K. S., Manimaran, A., Permaul, K., & Singh, S. J. (2009). Bioscience and Bioengineering, 107, 494–498.

    Article  CAS  Google Scholar 

  15. Rhee, K. H., & Julian, D. (2006). Journal of Microbiology and Biotechnology, 16, 1841–1848.

    CAS  Google Scholar 

  16. Livak, K. J., & Schmittgen, T. D. (2001). Methods, 25, 402–408.

    Article  CAS  Google Scholar 

  17. Coeffet-Le Gal, M. F., Thurston, L., Rich, P., Miao, V., & Baltz, R. H. (2006). Microbiology-Sgm, 152, 2993–3001.

    Article  Google Scholar 

  18. Luong, J. H. T. (1987). Biotechnology and Bioengineering, 29, 242–248.

    Article  CAS  Google Scholar 

  19. Maiti, S. K., Singh, K. P., Lantz, A. E., Bhushan, M., & Wangikar, P. P. (2010). Biotechnology and Bioengineering, 105, 109–120.

    Article  CAS  Google Scholar 

  20. Fouchard, S., Pruvost, J., Degrenne, B., Titica, M., & Legrand, J. (2009). Biotechnology and Bioengineering, 102, 232–245.

    Article  CAS  Google Scholar 

  21. Dogan, G. (2007). System Dynamics Review, 23, 415–436.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support provided by the National High Technology Research, Development Program of China (2007AA02Z200), the National Natural Science Foundation of China (No. 20706042, No. 20906070), and the Program of Introducing Talents of Discipline to Universities (No. B06006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Wen.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Primers used for RT-PCR (DOC 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, G., Jia, X., Wen, J. et al. Strain Improvement of Streptomyces roseosporus for Daptomycin Production by Rational Screening of He–Ne Laser and NTG Induced Mutants and Kinetic Modeling. Appl Biochem Biotechnol 163, 729–743 (2011). https://doi.org/10.1007/s12010-010-9078-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9078-x

Keywords

Navigation