Skip to main content
Log in

Flocculation Optimization of Microalga Nannochloropsis oculata

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of this work was to understand and optimize the flocculation of a marine alga Nannochloropsis oculata with two cationic salts, aluminum sulfate (AS), and ferric chloride (FC). Based on single-factor and response-surface-methodology experiments, second-order polynomial models were developed to examine the effect of initial algal biomass concentration (IABC), pH, and flocculant dose (FD) on final solid concentration of algae (SCA). The experimental and modeling results showed that SCA favored low pH, which however was undesirable to biomass recovery rate. There existed a positive stoichiometric relationship between FD and IABC; higher IABC required higher FD, and vice versa, for higher SCA. Optimum flocculation conditions were predicted at IABC of 1.7 g/l, pH 8.3, and FD of 383.5 μM for AS, and IABC of 2.2 g/l, pH 7.9, and FD of 438.1 μM for FC, under which the predicted maximum SCA were 32.98 and 30.10 g/l using AS and FC, respectively. The predictions were close to validation experimental results, indicating that the models can be used to guide and optimize the flocculation of N. oculata using AS and FC as the flocculants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Garcia, J., Mujeriego, R., & Hernandez-Marine, M. (2000). High rate algal pond operating strategies for urban wastewater nitrogen removal. Journal of Applied Phycology, 12, 331–339.

    Article  CAS  Google Scholar 

  2. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnolgoy Advances, 25(2), 294–306.

    Article  CAS  Google Scholar 

  3. Mark, E. H., & Donald, G. R. (2007). CO2 mitigation and renewable oil from photosynthetic microbes: A new appraisal. Mitigation and Adaptation Strategies for Global Change, 12, 573–608.

    Article  Google Scholar 

  4. Shen, Y., Yuan, W., Pei, Z., & Mao, E. (2008). Culture of microalga Botryococcus in livestock wastewater. Transaction of the ASABE, 54(4), 1395–1400.

    Google Scholar 

  5. Grima, E. M. M., Belarbi, E. H., Fernandez, F. G. A., Medina, A. R., & Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnology Advances, 20, 491–515.

    Article  Google Scholar 

  6. Hu, Q., and Sommerfeld, M. (2008). Photobioreactor: System and process. Presentation at Algae Biomass Summit, Seattle, WA, USA.

  7. Carlsson, A.S., Beilen, J.B., Moller, R., and Clayton, D. (2007). Micro- and macro-algae: utility for industrial applications. Outputs from the EPOBIO project.

  8. Green, F.B. (2008). Harvesting microalgae: Challenges and achievements. Presented at Algae Biomass Summit.

  9. Kim, T. J. K., Oh, J., Ryou, D. C., Moon, B. Y., Kim, Y. J., & Kim, S. H. (2009). Full-scale demonstration of improvement of sludge treatment performance. Desalination and Water Treatment, 2, 65–69.

    Article  CAS  Google Scholar 

  10. Massingill, M.J., Carlberg, J.M., Schwartz, G., Van Olst, J.C., Levin, J.C., and Brune, D.E. (2008). Sustainable large-scale microalgae cultivation for the economical production of biofuels and other valuable by-products. Presented at Algae Biomass Summit.

  11. Mohn, F. H. (1980). Experiences and strategies in the recovery of biomass from mass cultures of microalgae. In G. Shelf & C. J. Soeder (Eds.), Algae biomass (pp. 547–571). Amsterdam: Elsevier.

    Google Scholar 

  12. Rossignol, N., Lebeau, T., Jaouen, P., & Robert, J. M. (2000). Comparison of two membrane-photobioreactors, with free or immobilized cells, for the production of pigments by a marine diatom. Bioprocess Engineering, 23, 495–501.

    Article  CAS  Google Scholar 

  13. Brune, D.E., Lundquist, T., and Benemann, J. (2008). Algal production and harvest for food, feed and biofuels. Presented at Algal Biomass Summit.

  14. Divakaran, R., & Pillai, V. N. S. (2002). Flocculation of algae using chitosan. Journal of Applied Physics, 14, 419–422.

    CAS  Google Scholar 

  15. Lee, S. J., Kim, S. B., Kim, J. E., Kwon, G. S., Yoon, B. D., & Oh, H. M. (1998). Effects of harvesting method and growth stage on the flocculation of green alga Botryococcus braunii. Letters in Applied Microbiology, 27, 14–18.

    Article  Google Scholar 

  16. Papazi, A., Makridis, P., & Divanach, P. (2009). Harvesting Chlorella minutissima using cell coagulants. Journal of Applied Phycology, 9(03), 1573–1576.

    Google Scholar 

  17. Valdes, F.J., Hernandez, M.D.R, Gomez, A., Marcilla, A., and Chapuli, E. (2008). Study of the efficiency of different flocculants for effective microalgae harvesting. http://rua.ua.es/dspace/bitstream/10045/8536/1/Poster%20expoquimia%20floculacion%20(2008).pdf.

  18. Knuckey, R. M., Brown, M. R., Robert, R., & Framton, D. M. F. (2006). Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacultural Engineering, 35(3), 300–313.

    Article  Google Scholar 

  19. Sirin, S., Trobajo, R., Ibanez, C., & Salvadó, J. (2011). Harvesting the microalgae Phaeodactylum tricornutum with polyaluminum chloride, aluminium sulphate, chitosan and alkalinity-induced flocculation. Journal of Applied Phycology, 4(11), 1067–1080.

    Google Scholar 

  20. Yan, Z. (2012). Biomass and flocculation characteristics of Picochlorum oklahomensis and Nannochloropsis oculate. Master thesis, Oklahoma State University.

  21. Gieskes, T. E. (2008). Algae oil extraction. Organic fuels presentation. http://www.organicfuels.com/library/art/Organic%20Fuels%20Presentation%20NAA%202008%2004%2010.pdf.

  22. Sanyano, N., Chetpattananondh, P., Chongkhong, S. (2011). Optimization of flocculation of marine Chlorella sp. by response surface methodology. TICHE International Conference at Hatyai, Songkhla, Thailand.

  23. Shen, Y., Ty, M., Pei, Z., and Yuan, W. (2009). The effect of growth medium on biomass and lipid yield of microalgae Nanochloropsis. Mid-Central Conference of A.S.ABE.

  24. Sukenik, A., & Shelet, G. (1984). Algal autoflocculation–verification and proposed mechanism. Biotechnology and Bioengineering, 26(2), 142–147.

    Article  CAS  Google Scholar 

  25. Wyatt, N. B., Gloe, L. M., Brady, P. V., Hewson, J. C., Grillet, A. M., Hankins, M. G., et al. (2012). Critical conditions for ferric chloride-induced flocculation of freshwater algae. Biotechnology and Bioengineering, 109(2), 493–501.

    Article  CAS  Google Scholar 

  26. Bare, W. F. R., Jones, N. B., & Middlebrooks, E. J. (1975). Algae removal using dissolved air flotation. Journal of the Water Pollution Control Federation, 47, 153–169.

    CAS  Google Scholar 

  27. Friedman, A. A., Peaks, D. A., & Nichols, R. L. (1977). Algae separation from oxidation pond effluents. Journal of the Water Pollution Control Federation, 49, 111–119.

    CAS  Google Scholar 

  28. Moraine, R., Shelef, G., Sandbank, E., Bar Moshe, Z., and Schwarbard, L. (1980). Recovery of sewage born algae: Flocculation and centrifugation techniques. In G. shelef and C. J. Solder (Eds.), Algae biomass. Amsterdam: Elsevier/North Holland.

  29. Zhu, C. J., & Lee, Y. K. (1997). Determination of biomass dry weight of marine microalgae. Journal of Applied Phycology, 9, 189–194.

    Article  Google Scholar 

  30. Zhang, H., Kuang, Y., Zhe, L., & Liu, C. (2011). Influence on surface characteristics of microalgae cell by solution chemistry. Advanced Materials Research, 287–290, 1938–1942.

    Article  Google Scholar 

  31. Ayoub, G. M., Lee, S. I., & Koopman, B. (1986). Seawater induced algal flocculation. Water Research, 20(10), 1265–1271.

    Article  CAS  Google Scholar 

  32. Ives, K. J. (1959). The significance of surface electric charge on algae in water purification. Journal of Biochemical and Microbiological Technology and Engineering, 1(1), 37–47.

    Article  Google Scholar 

  33. Gregory, J., & Duan, J. (2001). Hydrolyzing metal salts as coagulants. Pure and Applied Chemistry, 73(12), 2017–2026.

    Article  CAS  Google Scholar 

  34. Hansjoachim, S. and Dobias, B. (2005). Coagulation and flocculation (pp. 384–407). Boca Raton: CRC

  35. Harith, Z. T., Yusoff, F. M., Mohamed, M. S., Din, M. S. M., & Ariff, A. B. (2009). Effect of different flocculants on the flocculation performance of microalgae, chaetoceros calcitrans, cells. African Journal of Biotechnology, 8(21), 5971–5978.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Yuhong Zeng in the Macromolecule and Vaccine Stabilization Center of University of Kansas for assistance in zeta potential measurement. This research was financially supported by the US National Science Foundation (award number CMMI-1239078). Part of this work was also funded by the Natural Science Foundation of China (award number 51108085), “863” Project (award number 2012AA021704), the Natural Science Foundation of Fujian Province (award number 2011J05125), and the start-up fund of North Carolina State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Y., Cui, Y. & Yuan, W. Flocculation Optimization of Microalga Nannochloropsis oculata . Appl Biochem Biotechnol 169, 2049–2063 (2013). https://doi.org/10.1007/s12010-013-0123-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0123-4

Keywords

Navigation