Skip to main content
Log in

Gastrodin Production from p-2-Hydroxybenzyl Alcohol Through Biotransformation by Cultured Cells of Aspergillus foetidus and Penicillium cyclopium

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of this work was to take advantage of the resting cells of suitable fungus as an in vitro model to prepare gastrodin from p-2-hydroxybenzyl alcohol (HBA), which mainly exists in the metabolites of the plant Gastrodia elata Blume. The one-step biotransformation of HBA into gastrodin was examined with the filamentous fungi cells of Aspergillus foetidus and Penicillium cyclopium AS 3.4513 in this study. The fundamental conditions of biotransformation were screened and compared for both fungi. P. cyclopium AS 3.4513 had better gastrodin-producing capability than A. foetidus through one-step bioconversion. The highest yield of gastrodin was 36 mg/L for A. foetidus ZU-G1 and 65 mg/L for P. cyclopium AS 3.4513 under the respective development condition during 6 days of biotransformation. The comparative results show that P. cyclopium AS 3.4513 reveals great potential to form gastrodin using HBA as the precursor. The products catalyzed by the resting cells of P. cyclopium AS 3.4513 were identified through NMR and ESI-MS. Current results can be applied not only to the chemical synthesis processes that may involve the hydroxylation reaction but also to the industrial production. The selected fungus is the potential biocatalyst for HBA glucosylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhao, Y. K., Cao, Q. E., Xiang, Y. Q., & Hu, Z. D. (1999). Journal of Chromatography, 849, 277–283.

    Article  CAS  Google Scholar 

  2. Heihachiro, T., Itiro, Y., Kazuo, Y., & Il, H. K. (1981). Chemical and Pharmaceutical Bulletin, 29, 55–62.

    Article  Google Scholar 

  3. Ojemann, L. M., Nelson, W. L., Shin, D. S., Rowe, A. O., & Buchanan, R. A. (2006). Epilepsy & Behavior, 8, 376–383.

    Article  Google Scholar 

  4. Jin, W. S., & Tian, D. Q. (2000). Chinese Traditional Drugs Technology, 2, 21–23.

    Google Scholar 

  5. Newman, D. J., Cragg, G. M., & Snader, K. M. (2003). Journal of Natural Products, 66, 1022–1037.

    Article  CAS  Google Scholar 

  6. Weymouth-Wilson, A. C. (1997). Natural Product Reports, 14, 99–110.

    Article  CAS  Google Scholar 

  7. Azerad, R. (1999). Microbial models for drug metabolism. In K. Faber (Ed.), Advances in biochemical engineering/biotechnology (Vol. 63, pp. 169–218). Berlin: Springer.

    Google Scholar 

  8. Ishige, T., Honda, K., & Shimizu, S. (2005). Current Opinion in Chemical Biology, 9, 174–180.

    Article  CAS  Google Scholar 

  9. Wilkinson, B., & Bachmann, B. O. (2006). Current Opinion in Chemical Biology, 10, 169–176.

    Article  CAS  Google Scholar 

  10. Wang, X., & Zhou, M. M. (2003). Journal of Pharmaceutical Sciences, 18, 269–270.

    CAS  Google Scholar 

  11. Yang, Y., Tang, R., & Ding, M. Y. (2004). Chinese Journal of Analysis Laboratory, 23, 1–4.

    Google Scholar 

  12. Zhang, H. F., He, G. Q., Liu, J., Ruan, H., Chen, Q. H., & Zhang, Q. (2008). Enzyme and Microbial Technology, 43, 25–30.

    Article  CAS  Google Scholar 

  13. Chen, Q. H., Liu, J., Zhang, H. F., He, G. Q., & Fu, M. L. (2009). Enzyme and Microbial Technology, 45, 175–180.

    Article  CAS  Google Scholar 

  14. Banerjee, R., Mukherjee, G., & Patra, K. C. (2005). Bioresource Technology, 96, 949–953.

    Article  CAS  Google Scholar 

  15. Nakashima, T., Mayuzumi, S., Inaba, S., Park, J. Y., Anzai, K., Suzuki, R., et al. (2008). Bioscience, Biotechnology, and Biochemistry, 72, 3051–3054.

    Article  CAS  Google Scholar 

  16. Li, H. B., & Chen, F. (2004). Journal of Chromatography. A, 1052, 229–232.

    Article  CAS  Google Scholar 

  17. Miller, G. L. (1959). Analytical Chemistry, 31, 426–427.

    Article  CAS  Google Scholar 

  18. Hamada, H., Ohiwa, S., Nshida, T., Katsuragi, H., Takeda, T., Hamada, H., et al. (2003). Plant Biotechnology, 20, 253–255.

    Article  CAS  Google Scholar 

  19. Elibol, M., & Mavituna, F. (1995). Applied Microbiology and Biotechnology, 43, 206–210.

    Article  CAS  Google Scholar 

  20. Aguedo, M., Waché, Y., Coste, F., Husson, F., & Belin, J. M. (2004). Journal of Molecular Catalysis B: Enzymatic, 29, 31–36.

    Article  CAS  Google Scholar 

  21. Dai, J. G., Gong, Z. H., Zhu, D. M., Guo, H. Z., Zheng, J. H., & Guo, D. A. (2002). Acta Botanica Sinica, 44, 377–378.

    CAS  Google Scholar 

  22. Huang, L. H., Li, J., Xu, G., Zhang, X. H., Wang, Y. G., Yin, Y. L., et al. (2010). Steroids, 75, 1039–1046.

    Article  CAS  Google Scholar 

  23. da Silva, B. F., & Rodrigues-Fo, E. (2010). Journal of Molecular Catalysis B: Enzymatic, 67, 184–188.

    Article  Google Scholar 

  24. Helbig, F., Steighardt, J., & Roos, W. (2002). Applied Environmental and Microbiology, 68, 1524–1533.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20806069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qihe Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, L., Dong, Y., Xu, T. et al. Gastrodin Production from p-2-Hydroxybenzyl Alcohol Through Biotransformation by Cultured Cells of Aspergillus foetidus and Penicillium cyclopium . Appl Biochem Biotechnol 170, 138–148 (2013). https://doi.org/10.1007/s12010-013-0166-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0166-6

Keywords

Navigation