Skip to main content
Log in

Biotransformation of Rice Bran to Ferulic Acid by Pediococcal Isolates

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Ferulic acid (FA) is widely used in foods, in beverages, and in various pharmaceutical industries as a precursor of vanillin. FA biotransformation can occur during the growth of lactic acid bacteria (LAB), and its conversion to other phenolic derivatives is observed by many scientists, where ferulic acid esterase (FAE) and ferulic acid decarboxylase (FDC) play significant roles. The present study aimed at screening a panel of LAB for their ability to release FA from rice bran, an agro waste material. FAE and FDC activities were analyzed for the preliminary screening of various dairy isolates. Two Pediococcus acidilactici isolates were selected for studying further the hydrolysis of FA from rice bran and its bioconversion into phenolic derivatives like 4-ethylphenol, vanillin, vanillic acid, and vanillyl alcohol. P. acidilactici M16, a probiotic isolate, has great potential for the production of FA from rice bran and could be exploited as starter culture in the food industry for the production of biovanillin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Metwally, A. M., Habib, A. M., & Khafagy, S. M. (1974). Sterols and triterpene alcohols from rice bran oil. Planta Medica, 25, 68–72.

    Article  CAS  Google Scholar 

  2. Norton, R. A. (1995). Quantitation of Steryl Ferulate and p-Coumarate Esters from Corn and Rice. Lipids, 30, 269–274.

    Article  CAS  Google Scholar 

  3. Cicero, A. F. G., & Derosa, G. (2005). Rice bran and its main components: potential role in the management of coronary risk factors. Current Topics in Nutraceutical Research, 3, 29–46.

    CAS  Google Scholar 

  4. Tomaro-Duchesneau, C., Saha, S., Malhotra, M., Coussa-Charley, M., Kahouli, I., Jones, M. L., et al. (2012). Microencapsulation for the therapeutic delivery of drugs, live mammalian and bacterial cells and other biopharmaceutics: current status and future directions. Pharmaceuticals, 5, 236–248.

    Article  CAS  Google Scholar 

  5. Walton, N. J., Mayer, M. J., & Narbad, A. (2003). Molecules of Interest: Vanillin. Phytochemistry, 63, 505–515.

    Article  CAS  Google Scholar 

  6. Walton, N. J., Narbad, A., Faulds, C., & Williamson, G. (2000). Novel approaches to the biosynthesis of vanillin. Current Opinion in Biotechnology, 11, 490–496.

    Article  CAS  Google Scholar 

  7. Kroon, P. A., Garcı, M. T., Conesa, I. J., Fillingham, G., Hazlewood, P., & Williamson, G. (1999). Release of Ferulic acid dehydrodimers from plant cell walls by feruloylesterases. Journal of the Science of Food and Agriculture, 79, 428–434.

    Article  CAS  Google Scholar 

  8. Faulds, C. B., & Williamson, G. (1995). Release of ferulic acid from wheat bran by a ferulic acid esterase (FAE-III) from Aspergillus niger. Applied Microbiology and Biotechnology, 43, 1082–1087.

    Article  CAS  Google Scholar 

  9. Koseki, T., Mihara, K., Murayama, T., & Shiono, Y. (2010). A novel Aspergillus oryzae esterase that hydrolyzes 4-hydroxybenzoic acid esters. FEBS Letters, 584, 4032–4036.

    Article  CAS  Google Scholar 

  10. Rumbold, K., Biely, P., Mastihubova, M., Gudelj, M., Gubitz, G., Robra, K. H., et al. (2003). Purification and properties of a feruloyl esterase involved in lignocellulose degradation by Aureobasidium pullulans. Applied and Environmental Microbiology, 69, 5622–5626.

    Article  CAS  Google Scholar 

  11. Donaghy, J., Kelly, P. F., & McKay, A. M. (1998). Detection of FAE production by Bacillus spp. And lactobacilli. Applied Microbiology and Biotechnology, 50, 257–260.

    Article  CAS  Google Scholar 

  12. Topakas, E., Stamatis, H., Biely, P., Kekos, D., Macris, B. J., & Christakopoulos, P. (2003). Purification and characterization of a feryloyl esterase from Fusarium oxysporum catalyzing esterification of phenolic acids in ternary water–organic solvent mixtures. Journal of Biotechnology, 102, 33–44.

    Article  CAS  Google Scholar 

  13. Topakas, E., Stamatis, H., Mastihubova, M., Biely, P., Kekos, D., Macris, B. J., et al. (2003). Purification and characterization of a Fusarium oxysporum feryloyl esterase (FoFAE-I) catalyzing transesterification of phenolic acid esters. Enzyme and Microbial Technology, 33, 729–737.

    Article  CAS  Google Scholar 

  14. Shin, H. D., & Chen, R. R. (2006). Production and characterization of a type B feruloyl esterase from Fusarium proliferatum NRRL 26517. Enzyme and Microbial Technology, 38, 478–485.

    Article  CAS  Google Scholar 

  15. Crepin, V. F., Faulds, C. B., & Connerton, I. F. (2003). A non-modular type B feruloyl esterase from Neurosporacrassa exhibits concentration-dependent substrate inhibition. Biochemical Journal, 370, 417–427.

    Article  CAS  Google Scholar 

  16. Crepin, V. F., Faulds, C. B., & Connerton, I. F. (2004). Identification of a type-D feruloyl esterase from Neurosporacrassa. Applied Microbiology and Biotechnology, 63, 567–570.

    Article  CAS  Google Scholar 

  17. Li, X., Fan, Y., & Fang, B. (2010). Purification and characterization of ferulic acid esterase from Penicillium citrinum. Wei Sheng Wu Xue Bao, 50, 1058–1064.

    CAS  Google Scholar 

  18. Kheder, F., Delaunay, S., Abo-Chameh, G., Paris, C., Muniglia, L., & Girardin, M. (2009). Production and biochemical characterization of a type B ferulic acid esterase from Streptomyces ambofaciens. Canadian Journal of Microbiology, 55, 729–738.

    Article  CAS  Google Scholar 

  19. MacKenzie, C. R., & Bilous, D. (1988). Ferulic acid esterase activity from Schizophyllum commune. Applied and Environmental Microbiology, 54, 1170–1173.

    CAS  Google Scholar 

  20. Faulds, C. B., & Williamson, G. (1991). The purification and characterization of 4-hydroxy-3-methoxycinnamic (ferulic) acid esterase from Streptomyces olivochromogenes. Journal of General Microbiology, 137, 2339–2345.

    Article  CAS  Google Scholar 

  21. Mukherjee, G., Singh, R. K., Mitra, A., & Sen, S. K. (2007). Ferulic acid esterase production by Streptomyces sp. Bioresource Technology, 98, 211–213.

    Article  CAS  Google Scholar 

  22. Topakas, E., Vafiadi, C., Stamatis, H., & Christakopoulos, P. (2005). Sporotrichum thermophile type C feruloyl esterase (StFaeC): purification, characterization, and its use for phenolic acid (sugar) ester synthesis. Enzyme and Microbial Technology, 36, 729–736.

    Article  CAS  Google Scholar 

  23. Topakas, E., Kalogeris, E., Kekos, D., Macris, B. J., & Christakopoulos, P. (2003). Production and partial characterization of feruloyl esterase by Sporotrichum thermophile in solid-state fermentation. Process Biochemistry, 38, 1539–1543.

    Article  CAS  Google Scholar 

  24. Topakas, E., Stamatis, H., Biely, P., & Christakopoulos, P. (2004). Purification and characterization of a type B feruloyl esterase (StFAE-A) from the thermophilic fungus Sporotrichum thermophile. Applied Microbiology and Biotechnology, 63, 686–690.

    Article  CAS  Google Scholar 

  25. Bartolome, B., Gomez-Cordoves, C., Sancho, A. I., Diez, N., Ferreira, P., Soliveri, J., et al. (2003). Growth and release of hydroxycinnamic acids from Brewer’s spent grain by Streptomyces avermitilis CECT 3339. Enzyme and Microbial Technology, 32, 140–144.

    Article  CAS  Google Scholar 

  26. Crepin, V. F., Faulds, C. B., & Connerton, I. F. (2003). Production and characterization of the Talaromyces stipitatus feruloyl esterase FAEC in Pichiapastoris: identification of the nucleophilic serine. Protein Expression and Purification, 29, 176–184.

    Google Scholar 

  27. Garcia-Conesa, M. T., Crepin, V. F., Goldson, A. J., Williamson, G., Cummings, N. J., Connerton, I. F., et al. (2004). The feruloyl esterase system of Talaromycessti pitatus: production of three discrete feruloylesterases, including novel enzymes, TsFaeC, with a broad substrate specificity. Journal of Biotechnology, 108, 227–241.

    Article  CAS  Google Scholar 

  28. Wang, X., Geng, X., Egashira, Y., & Sanada, H. (2004). Purification and characterization of a feruloyl esterase from the intestinal bacterium Lactobacillus acidophilus. Applied and Environmental Microbiology, 70, 2367–2372.

    Article  CAS  Google Scholar 

  29. Szwajgier, D., & Jakubczyk, A. (2011). Production of extracellular ferulic acid esterases by lactobacillus strains using natural and synthetic carbon sources. Acta Acta Scientiarum Polonorum, 10, 287–302.

    CAS  Google Scholar 

  30. Wang, Q. H., & Wang, X. M. (2005). Bioconversion of kitchen garbage to lactic acid by two mild strains of Lactobacillus sp. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 40, 1951–1962.

    Article  CAS  Google Scholar 

  31. Mathew, S., & Abraham, T. E. (2006). Bioconversions of ferulic acid, anhydroxycinnamic acid. Critical Reviews in Microbiology, 32, 115–125.

    Article  CAS  Google Scholar 

  32. Hatfield, R. D., Ralph, J., & Grabber, J. H. (1999). Cell wall cross-linking by ferulates and diferulates in grasses. Journal of the Science of Food and Agriculture, 79, 403–407.

    Article  CAS  Google Scholar 

  33. Bonnin, E., Lesage-Meessen, L., Asther, M., et al. (1999). Enhanced bioconversion of vanillic acid into vanillin by the use of "natural" cellobiose. Journal of the Science of Food and Agriculture, 79, 484–486.

    Article  CAS  Google Scholar 

  34. Beek, S. V., & Priest, F. G. (2000). Decarboxylation of substituted cinnamic acids by Lactic acid bacteria isolated during malt whisky fermentation. Applied and Environmental Microbiology, 66, 5322–5328.

    Article  Google Scholar 

  35. Barthelmebs, L., Divies, C., & Cavin, J. F. (2000). Knockout of the p-Coumarate decarboxylase gene from Lactobacillus plantarum reveals the existence of two other inducible enzymatic activities involved in phenolic acid metabolism. Applied and Environmental Microbiology, 66, 3368–3375.

    Article  CAS  Google Scholar 

  36. Narbad, A., & Gasson, M. J. (1998). Metabolism of ferulic acid via vanillin using a novel CoA-dependent pathway in a newly-isolated strain of Pseudornonas fluorescens. Microbiology, 144, 1397–1405.

    Article  CAS  Google Scholar 

  37. Landate, J. M., Rodriguez, H., Curiel, J. A., de las Rivas, B., Mancheno, J. M., & Munoz, R. (2010). Gene cloning, expression and characterization of phenolic acid decarboxylase from Lactobacillus brevis RM84. Industrial Microbiology and Biotechnology, 37, 617–624.

    Article  Google Scholar 

  38. Priefert, H., Rabenhorst, J., & Steinbuchel, A. (2001). Biotechnological production of vanillin. Applied Microbiology and Biotechnology, 56, 296–314.

    Article  CAS  Google Scholar 

  39. Vardakou, M., Palop, C. N., Christakopoulos, P., Faulds, C. B., Gasson, M. A., & Narbad, A. (2008). Evaluation of the prebiotic properties of wheat arabinoxylan fractions and induction of hydrolase activity in gut microflora. International Journal of Food Microbiology, 123, 166–170.

    Article  CAS  Google Scholar 

  40. Cavin, J. F., Andioc, V., Etievant, P. X., & Divies, C. (1993). Ability of wine LAB to metabolize phenol carboxylic acids. American Journal of Enology and Viticulture, 44, 76–80.

    CAS  Google Scholar 

  41. Cavin, J.-F., Barthelmebs, L., Guzzo, J., Van Beeumen, J., Samyn, B., Travers, J. F., et al. (1997). Purification and characterization of an inducible p-coumaric acid decarboxylase from Lactobacillus plantarum. FEMS Microbiology Letters, 147, 291–295.

    Article  CAS  Google Scholar 

  42. Chatonnet, P., Viala, C., & Dubourdieu, D. (1997). Influence of polyphenolic components of red wines on the microbial synthesis of volatile phenols. American Journal of Enology and Viticulture, 48, 443–448.

    CAS  Google Scholar 

  43. Bloem, A., Bertrand, A., Lonvaud-Funel, A., & Revelde, G. (2007). Vanillin production from simple phenols by wine-associated lactic acid bacteria. Letters in Applied Microbiology, 44, 62–67.

    Article  CAS  Google Scholar 

  44. Rodriguez, H., Landete, J. M., de La Rivas, B., & Munoz, R. (2008). Metabolism of food phenolic acids by Lactobacillus plantarum CECT 748T. Journal of Agricultural and Food Chemistry, 56, 3068–3072.

    Article  CAS  Google Scholar 

  45. De Las Rivas, B., Rodriguez, H., Curiel, J. A., Landete, J. M., & Munoz, R. (2009). Molecular screening of wine lactic acid bacteria degrading hydroxycinnamic acids. Journal of Agricultural and Food Chemistry, 57, 490–494.

    Article  Google Scholar 

  46. Kaur, B., & Chakraborty, D. (2012). Biotechnological and molecular approaches for vanillin production: a review. Applied Biochemistry and Biotechnology, 169, 1353–1372.

    Article  Google Scholar 

  47. Silva, I., Campos, F. M., Hogg, T., & Couto, J. A. (2011). Wine phenolic compounds influence the production of volatile phenols by wine-related lactic acid bacteria. International Journal of Food Microbiology, 145, 471–475.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge UGC, New Delhi for funding a major research project entitled “Metabolic engineering of LAB isolate for biotransformation of ferulic acid to vanillin” to Dr. Baljinder Kaur and meritorious BSR fellowship (Basic Scientific Research) to Mr. Debkumar Chakraborty.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baljinder Kaur.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Table 2

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, B., Chakraborty, D., Kaur, G. et al. Biotransformation of Rice Bran to Ferulic Acid by Pediococcal Isolates. Appl Biochem Biotechnol 170, 854–867 (2013). https://doi.org/10.1007/s12010-013-0223-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0223-1

Keywords

Navigation