Skip to main content
Log in

Understanding pH and Ionic Strength Effects on Aluminum Sulfate-Induced Microalgae Flocculation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of this study was to understand the effect of pH and ionic strength of aluminum sulfate on the flocculation of microalgae. It was found that changing pH and ionic strength influenced algal flocculation by changing the zeta potential of cells, which was described by the classical theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO). For both algal species of Scenedesmus dimorphus and Nannochloropsis oculata, cells with lower total DLVO interaction energy had higher flocculation efficiency, indicating that the DLVO model was qualitatively accurate in predicting the flocculation of the two algae. However, the two algae responded differently to changing pH and ionic strength. The flocculation of N. oculata increased with increasing aluminum sulfate concentration and favored either low (pH 5) or high (pH 10) pH where cells had relatively low negative surface charges. For S. dimorphus, the highest flocculation was achieved at low ionic strength (1 μM) or moderate pH (pH 7.5) where cell surface charges were fully neutralized (zero zeta potential).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brennan, L., & Owende, P. (2010). Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577.

    Article  CAS  Google Scholar 

  2. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1), 217–232.

    Article  CAS  Google Scholar 

  3. Pienkos, P. T., & Darzins, A. (2009). The promise and challenges of microalgal derived biofuels. Biofuels, Bioproducts and Biorefining, 3(4), 431–440.

    Article  CAS  Google Scholar 

  4. Yuan, W., Shen, Y., Pei, Z. J., Wu, Q., & Mao, E. (2009). Microalgae mass production methods. Transactions of the ASABE, 52(4), 1275–1287.

    Article  Google Scholar 

  5. Gudin, C., & Therpenier, C. (1986). Bioconversion of solar energy into organic chemicals by microalgae. Biotechnology Advances, 6, 73–110.

    CAS  Google Scholar 

  6. Uduman, N., Qi, Y., Danquah, M. K., Forde, G. M., Hoadley, A. (2010). Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. Journal of Renewable Sustainable Energy, 012701.

  7. Lubián, L. M. (1989). Concentrating cultured marine microalgae with chitosan. Aquacultural Engineering, 8(4), 257–265.

    Article  Google Scholar 

  8. Morales, J., De La Noüe, J., & Picard, G. (1985). Harvesting marine microalgae species by chitosan flocculation. Aquacultural Engineering, 4(4), 257–270.

    Article  Google Scholar 

  9. Molina Grima, E., Belarbi, E. H., Acien Fernandez, F. G., Robles Medina, A., & Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology Advances, 20(7), 491–515.

    Article  CAS  Google Scholar 

  10. Ives, K. J. (1959). The significance of surface electric charge on algae in water purification. Journal of Biochemical and Microbiological Technology and Engineering, 1(1), 37–47.

    Article  Google Scholar 

  11. Tenney, M. W., & Stumm, W. (1965). Chemical flocculation of microorganisms in biological waste treatment. Journal of the Water Pollution Control Federation, 37, 1370–1388.

    CAS  Google Scholar 

  12. Knuckey, R. M., Brown, M. R., Robert, R., & Frampton, D. M. (2006). Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacultural Engineering, 35(3), 300–313.

    Article  Google Scholar 

  13. Eldridge, R. J., Hill, D. R., & Gladman, B. R. (2012). A comparative study of the coagulation behaviour of marine microalgae. Journal of Applied Phycology, 24(6), 1667–1679.

    Article  CAS  Google Scholar 

  14. Valdés Barceló, F. J., Hernández Férez, M. D. R., Gómez Siurana, A., Marcilla Gomis, A., Chápuli Fernández, E. (2008). Study of the efficiency of different flocculants for effective microalgae harvesting. Presentation at the 11th Mediterranean Congress of Chemical Engineering, Barcelona 2008.

  15. Jiang, J. Q., Graham, N. J., & Harward, C. (1993). Comparison of polyferric sulphate with other coagulants for the removal of algae and algae-derived organic matter. Water Science and Technology, 27(11), 221–230.

    CAS  Google Scholar 

  16. Golueke, C. G., & Oswald, W. J. (1965). Harvesting and processing sewage-grown planktonic algae. Journal of the Water Pollution Control Federation, 37(4), 471–498.

    Google Scholar 

  17. Verwey, E. J. W., & Overbeek, J. T. G. (1941). Theory of the stability of lyophobic colloids. Dover Publications, 1999.

  18. Derjaguin, B. V., & Lanadau, L. (1941). Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes. Acta Physiochimica USSR, 14, 633.

    Google Scholar 

  19. Marshall, K. C., Stout, R., & Mitchell, R. (1971). Mechanism of the initial events in the sorption of marine bacteria to surfaces. Journal of General Microbiology, 68(3), 337–348.

    Article  CAS  Google Scholar 

  20. Facchini, P. J., Neumann, A. W., & DiCosmo, F. (1989). Adhesion of suspension-cultured Catharanthus roseus cells to surfaces: effect of pH, ionic strength, and cation valency. Biomaterials, 10(5), 318–324.

    Article  CAS  Google Scholar 

  21. Fletcher, M., Lessmann, J. M., & Loeb, G. I. (1991). Bacterial surface adhesives and biofilm matrix polymers of marine and freshwater bacteria. Biofouling, 4(1–3), 129–140.

    Article  CAS  Google Scholar 

  22. Zita, A., & Hermansson, M. (1994). Effects of ionic strength on bacterial adhesion and stability of flocs in a wastewater activated sludge system. Applied and Environmental Microbiology, 60(9), 3041–3048.

    CAS  Google Scholar 

  23. Liu, X. M., Sheng, G. P., & Yu, H. Q. (2007). DLVO approach to the flocculability of a photosynthetic H2-producing bacterium, Rhodopseudomonas acidophila. Environmental Science & Technology, 41(13), 4620–4625.

    Article  CAS  Google Scholar 

  24. Van Loosdrecht, M. C., Lyklema, J., Norde, W., Schraa, G., & Zehnder, A. J. (1987). Electrophoretic mobility and hydrophobicity as a measured to predict the initial steps of bacterial adhesion. Applied and Environmental Microbiology, 53(8), 1898–1901.

    Google Scholar 

  25. Norde, W., & Lyklema, J. (1989). Protein adsorption and bacterial adhesion to solid surfaces: a colloid-chemical approach. Colloids and Surfaces, 38(1), 1–13.

    Article  CAS  Google Scholar 

  26. Roper, M. M., & Marshall, K. C. (1974). Modification of the interaction between Escherichia coli and bacteriophage in saline sediment. Microbial Ecology, 1(1), 1–13.

    Article  CAS  Google Scholar 

  27. Tatulian, S. A., Gordeliy, V. I., Sokolova, A. E., & Syrykh, A. G. (1991). A neutron diffraction study of the influence of ions on phospholipid membrane interactions. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1070(1), 143–151.

    Article  CAS  Google Scholar 

  28. Tenney, M. W., Echelberger, W. F., Schuessler, R. G., & Pavoni, J. L. (1969). Algal flocculation with synthetic organic polyelectrolytes. Applied Microbiology, 18(6), 965–971.

    CAS  Google Scholar 

  29. Shen, Y., Ty, M., Pei, Z. J., Yuan, W. (2010). The effect of growth medium on biomass and lipid yield of microalgae Nannochloropsis. Mid-Central Conference of ASABE 2010.

  30. Sorokin, C., & Krauss, R. W. (1958). The effect of light intensity on the growth rates of green algae. Plant Physiology, 33, 109–113.

    Article  CAS  Google Scholar 

  31. Hermansson, M. (1999). The DLVO theory in microbial adhesion. Colloids and Surfaces B: Biointerfaces, 14(1), 105–119.

    Article  CAS  Google Scholar 

  32. Zhu, C. J., & Lee, Y. K. (1997). Determination of biomass dry weight of marine microalgae. Journal of Applied Phycology, 9(2), 189–194.

    Article  Google Scholar 

  33. Gregory, J., & Duan, J. (2001). Hydrolyzing metal salts as coagulants. Pure and Applied Chemistry, 73(12), 2017–2026.

    Article  CAS  Google Scholar 

  34. Hadjoudja, S., Deluchat, V., & Baudu, M. (2010). Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris. Journal of Colloid and Interface Science, 342(2), 293–299.

    Article  CAS  Google Scholar 

  35. Shen, Y., Cui, Y., & Yuan, W. (2013). Flocculation optimization of microalga Nannochloropsis oculata. Applied Biochemistry and Biotechnology, 169(7), 2049–2063.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Albena Ivanisevic at the Department of Material Science and Engineering at NCSU for the use of the Zetasizer and Alexander Richter at the Department of Chemical and Biomolecular Engineering of NCSU for the kind help in zeta potential measurements. This research was financially supported by the US National Science Foundation (Award # CMMI-1239078) and the startup fund of North Carolina State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Yuan, W. & Cheng, J. Understanding pH and Ionic Strength Effects on Aluminum Sulfate-Induced Microalgae Flocculation. Appl Biochem Biotechnol 173, 1692–1702 (2014). https://doi.org/10.1007/s12010-014-0957-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0957-4

Keywords

Navigation