Skip to main content
Log in

Insights into the Role of Glucose and Glycerol as a Mixed Carbon Source in the Improvement of ε-Poly-l-Lysine Productivity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Using glucose–glycerol mixed carbon source has proved to be an effective strategy for ε-poly-l-lysine (ε-PL) production with rapid cell growth and much higher ε-PL productivity. In this study, we attempt to focus on key enzymes and intracellular energy cofactors to reveal the underlying mechanisms involved in such significant improvements. The activities of key enzymes involved in the pentose phosphate pathway, TCA cycle, anaplerotic pathway and the aspartate family amino acid biosynthesis pathway as well as ε-PL synthetase showed overall enhancement with the mixed carbon source, especially in the late stages of fermentation, compared with those in either glucose or glycerol single carbon sources. Moreover, the intracellular cofactors in terms of NADH and ATP kept higher formation and consumption rates in the mixed carbon source, respectively, throughout batch fermentation. As a result, Streptomyces sp. M-Z18 could be accelerated in cell growth and precursor l-lysine biosynthesis in the mixed carbon source, thus finally shortening fermentation time and enhancing ε-PL productivity. Understanding this process will provide information for the rational regulation of the metabolism network of the quantative production of ε-PL by metabolic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. El-Sersy, N. A., Abdelwahab, A. E., Abouelkhiir, S. S., Abou-Zeid, D. M., & Sabry, S. A. (2012). Journal of Basic Microbiology, 52(5), 513–522.

    Article  CAS  Google Scholar 

  2. Yamanaka, K., Maruyama, C., Takagi, H., & Hamano, Y. (2008). Nature Chemical Biology, 4(12), 766–772.

    Article  CAS  Google Scholar 

  3. Yamanaka, K., & Hamano, Y. (2010). Amino-acid homopolymers occurring in nature. In Y. Hamano (Ed.) Biotechnological production of poly-epsilon- l -lysine for food and medical applications, vol. 15, (pp. 61–75). Springer Berlin.

  4. Shih, I. L., Shen, M. H., & Van, Y. T. (2006). Bioresource Technology, 97(9), 1148–1159.

    Article  CAS  Google Scholar 

  5. Kobayashi, K., & Nishikawa, M. (2007). World Journal of Microbiology and Biotechnology, 23(7), 1033–1036.

    Article  CAS  Google Scholar 

  6. Li, S., Li, F., Chen, X. S., Wang, L., Xu, J., Tang, L., & Mao, Z. G. (2012). Applied Biochemistry and Biotechnology, 166(2), 414–423.

    Article  CAS  Google Scholar 

  7. Li, S., Tang, L., Chen, X. S., Liao, L. J., Li, F., & Mao, Z. G. (2011). Journal of Industrial Microbiology and Biotechnology, 38(4), 557–563.

    Article  CAS  Google Scholar 

  8. Shih, I. L., & Shen, M. H. (2006). Enzyme and Microbial Technology, 39(1), 15–21.

    Article  CAS  Google Scholar 

  9. Kahar, P., Iwata, T., Hiraki, J., Park, E. Y., & Okabe, M. (2001). Journal of Bioscience and Bioengineering, 91(2), 190–194.

    CAS  Google Scholar 

  10. Jia, S.R., Wang, G.L., Sun, Y.F., and Tan, Z.L. (2009). Conference thesis, Tianjin University of Science and Technology, Tianjin, China.

  11. Bankar, S. B., & Singhal, R. S. (2010). Bioresource Technology, 101(21), 8370–8375.

    Article  CAS  Google Scholar 

  12. Liu, Y., Zhang, Y. G., Zhang, R. B., Zhang, F., & Zhu, J. (2011). Current Microbiology, 62(1), 152–158.

    Article  CAS  Google Scholar 

  13. Kim, Y. S., Lee, J. H., Kim, N. H., Yeom, S. J., Kim, S. W., & Oh, D. K. (2011). Applied Microbiology and Biotechnology, 90(2), 489–497.

    Article  CAS  Google Scholar 

  14. Peacock, L., Ward, J., Ratledge, C., Dickinson, F. M., & Ison, A. (2003). Enzyme and Microbial Technology, 32(1), 157–166.

    Article  CAS  Google Scholar 

  15. Nishikawa, M., & Ogawa, K. (2002). Applied and Environmental Microbiology, 68(7), 3575–3581.

    Article  CAS  Google Scholar 

  16. Hiraki, J., Hatakeyama, M., & Morita, H. (1998). Seibutu Kougaku Kaishi, 76, 487–493.

    CAS  Google Scholar 

  17. Chen, X. S., Ren, X. D., Dong, N., Li, S., Li, F., Zhao, F. L., Tang, L., Zhang, J. H., & Mao, Z. G. (2012). Bioprocess and Biosystems Engineering, 35(3), 469–475.

    Article  CAS  Google Scholar 

  18. Tang, Z., Xiao, C., Zhuang, Y., Chu, J., Zhang, S., Herron, P. R., Hunter, I. S., & Guo, M. (2011). Enzyme and Microbial Technology, 49(1), 17–24.

    Article  Google Scholar 

  19. Bramwell, H., Nimmo, H. G., Hunter, L. S., & Coggins, J. R. (1993). Biochemistry Journal, 293(1), 131–136.

    CAS  Google Scholar 

  20. Mukhopadhyay, B., & Purwantini, E. (2000). Biochimica et Biophysica Acta, 1475(3), 191–206.

    Article  CAS  Google Scholar 

  21. Krupa, O. C., & Vannucci, D. (2003). Polar Biology, 26(7), 452–457.

    Google Scholar 

  22. Chen, X. S., & Mao, Z. G. (2013). Applied Biochemistry and Biotechnology, 170(1), 185–197.

    Article  CAS  Google Scholar 

  23. Myung, S., Wang, Y., & Zhang, Y. H. P. (2010). Process Biochemistry, 45(12), 1882–1887.

    Article  CAS  Google Scholar 

  24. Bhattacharyaa, S., Schiavonea, M., Gomesb, J., & Bhattacharya, S. K. (2004). Journal of Biotechnology, 111(2), 203–217.

    Article  Google Scholar 

  25. Cichna, M., Raab, M., Daxecker, H., Griesmacher, A., Muller, M. M., & Markl, P. (2003). Journal of Chromatography B, 787(2), 381–391.

    Article  CAS  Google Scholar 

  26. Hong, P., Liu, H. W., Jin, G. H., Li, Y., & Yang, K. S. (2002). Chinese Journal of Sports Medicine, 21(1), 57–60 (in Chinese).

    Google Scholar 

  27. Sunya, S., Gorreta, N., Delvigned, F., Uribelarrea, J. L., & Molina-Jouve, C. (2012). Journal of Biotechnology, 157, 379–390.

    Article  CAS  Google Scholar 

  28. Zhu, Y., & Yang, S. T. (2004). Journal of Biotechnology, 110, 143–157.

    Article  CAS  Google Scholar 

  29. Bankar, S. B., & Singhal, R. S. (2013). RSC Advances, 3, 8586–8603.

    Article  CAS  Google Scholar 

  30. Hamano, Y., Nicchu, I., Shimizu, T., Onji, Y., Hiraki, J., & Takagi, H. (2007). Applied Microbiology and Biotechnology, 76, 873–882.

    Article  CAS  Google Scholar 

  31. Ghorbel, S., Kormanec, J., Artus, A., & Virolle, M. J. (2006). Journal of Bacteriology, 188(2), 677–686.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31301556), the Scientific and Technical Supporting Program of Jiangsu (BE2012616), the Jiangsu province "Collaborative Innovation Center for Advanced Industrial Fermentation" industry development program, and the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the 111 Project (111-2-06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu-Sheng Chen or Zhong-Gui Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Chen, XS., Ren, XD. et al. Insights into the Role of Glucose and Glycerol as a Mixed Carbon Source in the Improvement of ε-Poly-l-Lysine Productivity. Appl Biochem Biotechnol 173, 2211–2224 (2014). https://doi.org/10.1007/s12010-014-1026-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1026-8

Keywords

Navigation