Skip to main content
Log in

From Cheese Whey to Carotenes by Blakeslea trispora in a Bubble Column Reactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of the aeration rate on carotene production from deproteinized hydrolyzed whey by Blakeslea trispora in a bubble column reactor was investigated. Aeration rate significantly affected carotene concentration and morphology of the fungus. Enhanced aeration caused change of the morphology of B. trispora from pellets with large projected area to pellets with small projected area. This morphological differentiation of the fungus was associated with a significant increase in carotene production. When deproteinized hydrolyzed whey was supplemented with 30 g/l Tween 80, 30 g/l Span 80, and 0.2 % (v/v) β-ionone, the highest carotene productivity (55.5 mg/g dry biomass/day or 405.0 mg/l/day) was obtained at an aeration rate of 4 vvm. This is the highest carotene productivity that has been reported among the agro-industrial by-products up to date. In this case, the carotenes produced consisted of β-carotene (67 %), γ-carotene (15 %), and lycopene (18 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tinoi, J., Rakariyatham, N., & Deming, R. L. (2005). Simplex optimization of carotenoid production by Rhodotorula glutinis using hydrolyzed mung bean waste flour as substrate. Process Biochemistry, 40, 2551–2557.

    Article  CAS  Google Scholar 

  2. Valduga, E., Valerio, A., Treichel, H., Junior, A. F., & Luccio, M. D. (2009). Optimization of the production of total carotenoids by Sporidiobolus salmonicolor (CBS 2636) using response surface technique. Food and Bioprocess Technology, 2, 415–421.

    Article  CAS  Google Scholar 

  3. Varzakakou, M., & Roukas, T. (2010). Identification of carotenoids produced from cheese whey by Blakeslea trispora in submerged fermentation. Preparative Biochemistry & Biotechnology, 40, 76–82.

    Article  CAS  Google Scholar 

  4. Ribeiro, B. D., Barreto, D. W., & Coelho, M. A. Z. (2011). Technological aspects of β-carotene production. Food and Bioprocess Technology, 4, 693–701.

    Article  CAS  Google Scholar 

  5. Yan, G., Liang, H., Duan, C., & Han, B. (2012). Enhanced production of β-carotene by recombinant industrial wine yeast using grape juice as substrate. Current Microbiology, 64, 152–158.

    Article  CAS  Google Scholar 

  6. Donhowe, E. G., & Kong, F. (2014). Beta-carotene: digestion, microencapsulation, and in vitro bioavailability. Food and Bioprocess Technology, 7, 338–354.

    Article  CAS  Google Scholar 

  7. Wang, J. F., Liu, X. J., Liu, R. S., Li, H. M., & Tang, Y. J. (2012). Optimization of the mated fermentation process for the production of lycopene by Blakeslea trispora NRRL 2895 (+) and NRRL 2896 (−). Bioprocess and Biosystems Engineering, 35, 553–564.

    Article  CAS  Google Scholar 

  8. Nanou, K., & Roukas, T. (2013). Oxidative stress response of Blakeslea trispora induced by iron ions during carotene production in shake flask culture. Applied Biochemistry and Biotechnology, 169, 2281–2289.

    Article  CAS  Google Scholar 

  9. Varzakakou, M., Roukas, T., Kotzekidou, P., & Giamoustaris, A. (2010). Effect of non-ionic surfactants and beta-ionone on the morphology of Blakeslea trispora and carotenoids production from cheese whey in submerged aerobic growth: a statistical approach. Food Biotechnology, 24, 1–18.

    Article  Google Scholar 

  10. Nanou, K., & Roukas, T. (2010). Oxidative stress response and morphological changes of Blakeslea trispora induced by butylated hydroxytoluene during carotene production. Applied Biochemistry and Biotechnology, 160, 2415–2423.

    Article  CAS  Google Scholar 

  11. Filotheou, A., Nanou, K., Papaioannou, E., Roukas, T., Kotzekidou, P., & Liakopoulou-Kyriakides, M. (2012). Application of response surface methodology to improve carotene production from synthetic medium by Blakeslea trispora in submerged fermentation. Food and Bioprocess Technology, 5, 1189–1196.

    Article  CAS  Google Scholar 

  12. Liu, X. J., Liu, R. S., Li, H. M., & Tang, Y. J. (2012). Lycopene production from synthetic medium by Blakeslea trispora NRRL 2895 (+) and 2896 (−) in a stirred-tank fermenter. Bioprocess and Biosystems Engineering, 35, 739–749.

    Article  CAS  Google Scholar 

  13. Wang, Q., Luo, W., Gu, Q., Feng, L., Li, H., & Yu, X. (2013). Enhanced lycopene content in Blakeslea trispora by effective mutation-screening method. Applied Biochemistry and Biotechnology, 171, 1692–1700.

    Article  CAS  Google Scholar 

  14. Mantzouridou, F., Tsimidou, M. Z., & Roukas, T. (2006). Performance of crude olive pomace oil and soybean oil during carotenoid production by Blakeslea trispora in submerged fermentation. Journal of Agricultural and Food Chemistry, 54, 2575–2581.

    Article  CAS  Google Scholar 

  15. Ananda, N., & Vadlani, P. V. (2010). Production and optimization of carotenoid-enriched dried distiller’s grains with solubles by Phaffia rhodozyma and Sporobolomyces roseus fermentation of whole stillage. Journal of Industrial Microbiology & Biotechnology, 37, 1183–1192.

    Article  CAS  Google Scholar 

  16. Cutzu, R., Coi, A., Rosso, F., Bardi, L., Ciani, M., Budroni, M., Zara, G., Zara, S., & Mannazzu, I. (2013). From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant. World Journal of Microbiology and Biotechnology, 29, 1009–1017.

    Article  CAS  Google Scholar 

  17. Petrik, S., Kadar, Z., & Marova, I. (2013). Utilization of hydrothermally pretreated wheat straw for production of bioethanol and carotene-enriched biomass. Bioresource Technology, 133, 370–377.

    Article  CAS  Google Scholar 

  18. Valduga, E., Ribeiro, A. H. R., Cence, K., Colet, R., Tiggemann, L., Zeni, J., & Toniazzo, G. (2013). Carotenoids production from a newly isolated Sporidiobolus pararoseus strain using agroindustrial substrates. Biocatalysis and Agricultural Biotechnology, 3(2), 207–213. doi:10.1016/j.bcab.2013.10.001.

    Article  Google Scholar 

  19. Zhai, Y. G., Han, M., Zhang, W. G., & Qian, H. (2014). Carotene production from agro-industrial wastes by Arthrobacter globiformis in shake-flask culture. Preparative Biochemistry & Biotechnology, 44, 355–369.

    Article  CAS  Google Scholar 

  20. Aksu, Z., & Tugba Eren, A. (2005). Carotenoids production by the yeast Rhodotorula mucilaginosa: use of agricultural wastes as a carbon source. Process Biochemistry, 40, 2985–2991.

    Article  CAS  Google Scholar 

  21. Marova, I., Carnecka, M., Halienova, A., Certik, M., Dvorakova, T., & Haronikova, A. (2012). Use of several waste substrates for carotenoid-rich yeast biomass production. Journal of Environmental Management, 95, 338–342.

    Article  Google Scholar 

  22. Azmi, W., Thakur, M., & Kumar, A. (2011). Production of β-carotene from deproteinized waste whey filtrate using Mucor azygosporus MTCC 414 in submerged fermentation. Acta Microbiologica et Immunologica Hungaricae, 58, 189–200.

    Article  CAS  Google Scholar 

  23. Varzakakou, M., Roukas, T., & Kotzekidou, P. (2010). Effect of the ratio of (+) and (−) mating type of Blakeslea trispora on carotene production from cheese whey in submerged fermentation. World Journal of Microbiology and Biotechnology, 26, 2151–2156.

    Article  CAS  Google Scholar 

  24. Varzakakou, M., Roukas, T., Papaioannou, E., Kotzekidou, P., & Liakopoulou-Kyriakides, M. (2011). Autolysis of Blakeslea trispora during carotene production from cheese whey in an airlift reactor. Preparative Biochemistry & Biotechnology, 41, 7–21.

    Article  CAS  Google Scholar 

  25. Nanou, K., Roukas, T., & Papadakis, E. (2012). Improved production of carotenes from synthetic medium by Blakeslea trispora in a bubble column reactor. Biochemical Engineering Journal, 67, 203–207.

    Article  CAS  Google Scholar 

  26. Mantzouridou, F., Roukas, T., & Kotzekidou, P. (2002). Effect of the aeration rate and agitation speed on β-carotene production and morphology of Blakeslea trispora in a stirred tank reactor: mathematical modeling. Biochemical Engineering Journal, 10, 123–135.

    Article  CAS  Google Scholar 

  27. Roukas, T., & Mantzouridou, F. (2001). An improved method for extraction of β-carotene from Blakeslea trispora. Applied Biochemistry and Biotechnology, 90, 37–45.

    Article  CAS  Google Scholar 

  28. Nanou, K., Roukas, T., & Kotzekidou, P. (2007). Role of hydrolytic enzymes and oxidative stress in autolysis and morphology of Blakeslea trispora during β-carotene production in submerged fermentation. Applied Microbiology and Biotechnology, 74, 447–453.

    Article  CAS  Google Scholar 

  29. Nanou, K., & Roukas, T. (2011). Stimulation of the biosynthesis of carotenes by oxidative stress in Blakeslea trispora induced by elevated dissolved oxygen in the culture medium. Bioresource Technology, 102, 8159–8164.

    Article  CAS  Google Scholar 

  30. Nanou, K., Roukas, T., & Papadakis, E. (2011). Oxidative stress and morphological changes in Blakeslea trispora induced by enhanced aeration during carotene production in a bubble column reactor. Biochemical Engineering Journal, 54, 172–177.

    Article  CAS  Google Scholar 

  31. Goksungur, Y., Mantzouridou, F., & Roukas, T. (2002). Optimization of the production of β-carotene from molasses by Blakeslea trispora: a statistical approach. Journal of Chemical Technology and Biotechnology, 77, 933–943.

    Article  CAS  Google Scholar 

  32. Goksungur, Y., Mantzouridou, F., Roukas, T., & Kotzekidou, P. (2004). Production of β-carotene from beet molasses by Blakeslea trispora in stirred-tank and bubble column reactors. Applied Biochemistry and Biotechnology, 112, 37–54.

    Article  CAS  Google Scholar 

  33. Buzzini, P., & Martini, A. (1999). Production of carotenoids by strains of Rhodotorula glutinis cultured in raw materials of agro-industrial origin. Bioresource Technology, 71, 41–44.

    Article  Google Scholar 

  34. Malisorn, C., & Suntornsuk, W. (2008). Optimization of β-carotene production by Rhodotorula glutinis DM28 in fermented radish brine. Bioresource Technology, 99, 2281–2287.

    Article  CAS  Google Scholar 

  35. Malisorn, C., & Suntornsuk, W. (2009). Improved β-carotene production of Rhodotorula glutinis in fermented radish brine by continuous cultivation. Biochemical Engineering Journal, 43, 27–32.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Triantafyllos Roukas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roukas, T., Varzakakou, M. & Kotzekidou, P. From Cheese Whey to Carotenes by Blakeslea trispora in a Bubble Column Reactor. Appl Biochem Biotechnol 175, 182–193 (2015). https://doi.org/10.1007/s12010-014-1260-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1260-0

Keywords

Navigation