Skip to main content
Log in

Production of Rebaudioside A from Stevioside Catalyzed by the Engineered Saccharomyces cerevisiae

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Rebaudioside A has superior taste quality among the steviol glycosides extracted from Stevia rebaudiana leaves. Given its high purity as a general-purpose sweetener, rebaudioside A has received significant attention and has been widely applied in food and beverages in recent decades. Stevioside is one of the major steviol glycosides and can be converted to rebaudioside A by the uridine-diphosphate dependent glucosyltransferase UGT76G1 in S. rebaudiana. To explore the applicability of and limits in producing rebaudioside A from stevioside through whole-cell biocatalysis, the engineered Saccharomyces cerevisiae expressing UGT76G1, using a newly constructed constitutive expression vector, was used as the whole-cell biocatalyst. Citrate was added to the reaction mixture to allow metabolic regulation when glucose was fed to provide the activated sugar donor UDP-glucose for glycosylation of stevioside in vivo. In an evaluation of the whole-cell reaction parameters involving cell permeability, temperature, pH, citrate and Mg2+ concentrations, and glucose feeding, production of 1160.5 mg/L rebaudioside A from 2 g/L stevioside was achieved after 48 h without supplementation of extracellular UDP-glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Carakostas, M. C., Curry, L. L., Boilea, A. C., & Brusick, D. (2008). Overview: the history, technical function and safety of rebaudioside A, a naturally occurring steviol glycoside, for use in food and beverages. Food and Chemical Toxicology, 46(7), S1–S10.

    Article  CAS  Google Scholar 

  2. Wu, X. L., Wang, B. G., Chen, T. T., Gan, M., Chen, X. X., Chen, F., Wei, H., & Xu, F. (2014). The non-cytotoxicity characterization of rebaudioside A as a food additive. Food and Chemical Toxicology, 66, 334–340.

    Article  CAS  Google Scholar 

  3. Huang, X. Y., Fu, J. F., & Di, D. L. (2010). Preparative isolation and purification of steviol glycosides from Stevia rebaudiana Bertoni using high-speed counter-current chromatography. Separation and Purification Technology, 71(2), 220–224.

    Article  CAS  Google Scholar 

  4. Li, J., Chen, Z. B., & Di, D. L. (2012). Preparative separation and purification of Rebaudioside A from Stevia rebaudiana Bertoni crude extracts by mixed bed of macroporous adsorption resins. Food Chemistry, 132(1), 268–276.

    Article  CAS  Google Scholar 

  5. Lui, Y. F., Di, D. L., Bai, Q. Q., Li, J. T., Chen, Z. B., Lou, S., & Ye, H. L. (2011). Preparative separation and purification of rebaudioside A from steviol glycosides using mixed-mode macroporous adsorption resins. Journal of Agricultural and Food Chemistry, 59(17), 9629–9636.

    Article  Google Scholar 

  6. Ye, F. Y., Yang, R. J., Hua, X., & Zhao, G. H. (2014). Adsorption characteristics of rebaudioside A and stevioside on cross-linked poly(styrene-co-divinylbenzene) macroporous resins functionalized with chloromethyl, amino and phenylboronic acid groups. Food Chemistry, 159, 38–46.

    Article  CAS  Google Scholar 

  7. Brandle, J. E., Starratt, A. N., & Gijzen, M. (1998). Stevia rebaudiana: its agricultural, biological, and chemical properties. Canadian Journal of Plant Science, 78(4), 527–536.

    Article  CAS  Google Scholar 

  8. Scipioni, G. P., Ferreyra, D. J., Acuna, M. G., & Schmalko, M. E. (2010). Rebaudioside A release from matrices used in a yerba mate infusion. Journal of Food Engineering, 100(4), 627–633.

    Article  CAS  Google Scholar 

  9. Prakash, I., DuBois, G. E., Cios, J. F., Wilkens, K. L., & Fosdick, L. E. (2008). Development of rebiana, a natural, non-caloric sweetener. Food and Chemical Toxicology, 46(7), S75–S82.

    Article  CAS  Google Scholar 

  10. Brandle, J. E., & Telmer, P. G. (2007). Steviol glycoside biosynthesis. Phytochemistry, 68(14), 1855–1863.

    Article  CAS  Google Scholar 

  11. Humphrey, T. V., Richman, A. S., Menassa, R., & Brandle, J. E. (2006). Spatial organisation of four enzymes from Stevia rebaudiana that are involved in steviol glycoside synthesis. Plant Molecular Biology, 61(1–2), 47–62.

    Article  CAS  Google Scholar 

  12. Richman, A., Swanson, A., Humphrey, T., Chapman, R., McGarvey, B., Pocs, R., & Brandle, J. (2005). Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana. Plant Journal, 41(1), 56–67.

    Article  CAS  Google Scholar 

  13. Madhav, H., Bhasker, S., & Chinnamma, M. (2013). Functional and structural variation of uridine diphosphate glycosyltransferase (UGT) gene of Stevia rebaudiana-UGTSr involved in the synthesis of rebaudioside A. Plant Physiology and Biochemistry, 63, 245–253.

    Article  CAS  Google Scholar 

  14. de Carvalho, C. C. C. R. (2011). Enzymatic and whole cell catalysis: finding new strategies for old processes. Biotechnology Advances, 29(1), 75–83.

    Article  Google Scholar 

  15. Ruffing, A., & Chen, R. R. (2006). Metabolic engineering of microbes for oligosaccharide and polysaccharide synthesis. Microbial Cell Factories, 5.

  16. Werner, S. R., & Morgan, J. A. (2009). Expression of a Dianthus flavonoid glucosyltransferase in Saccharomyces cerevisiae for whole-cell biocatalysis. Journal of Biotechnology, 142(3–4), 233–241.

    Article  CAS  Google Scholar 

  17. Oka, T., & Jigami, Y. (2006). Reconstruction of de novo pathway for synthesis of UDP-glucuronic acid and UDP-xylose from intrinsic UDP-glucose in Saccharomyces cerevisiae. FEBS Journal, 273(12), 2645–2657.

    Article  CAS  Google Scholar 

  18. Bloxham, D. P., & Lardy, H. A. (1973). In P. D. Boyer (Ed.), The enzymes (pp. 239–278). New York.

  19. Partow, S., Siewers, V., Bjorn, S., Nielsen, J., & Maury, J. (2010). Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast, 27(11), 955–964.

    Article  CAS  Google Scholar 

  20. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  21. Gatignol, A., Dassain, M., & Tiraby, G. (1990). Cloning of Saccharomyces cerevisiae promoters using a probe vector based on phleomycin resistance. Gene, 91(1), 35–41.

    Article  CAS  Google Scholar 

  22. Ogden, J. E., Stanway, C., Kim, S., Mellor, J., Kingsman, A. J., & Kingsman, S. M. (1986). Efficient expression of the Saccharomyces cerevisiae PGK gene depends on an upstream activation sequence but does not require TATA sequences. Molecular and Cellular Biology, 6(12), 4335–4343.

    Article  CAS  Google Scholar 

  23. Holland, M. J., & Holland, J. P. (1978). Isolation and identification of yeast messenger ribonucleic acids coding for enolase, glyceraldehyde-3-phosphate dehydrogenase, and phosphoglycerate kinase. Biochemistry, 17(23), 4900–4907.

    Article  CAS  Google Scholar 

  24. Lin, J., Liao, X. Y., Du, G. C., & Chen, J. (2010). Use of Escherichia coli add/ade mutant and Saccharomyces cerevisiae WSH2 to construct a highly efficient coupled system for glutathione production. Enzyme and Microbial Technology, 46(2), 82–86.

    Article  CAS  Google Scholar 

  25. Laouar, L., Lowe, K. C., & Mulligan, B. J. (1996). Yeast responses to nonionic surfactants. Enzyme and Microbial Technology, 18(6), 433–438.

    Article  CAS  Google Scholar 

  26. Parrou, J. L., Teste, M. A., & Francois, J. (1997). Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology, 143, 1891–1900.

    Article  CAS  Google Scholar 

  27. Wilson, W. A., Roach, P. J., Montero, M., Baroja-Fernandez, E., Munoz, F. J., Eydallin, G., Viale, A. M., & Pozueta-Romero, J. (2010). Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiology Reviews, 34(6), 952–985.

    Article  CAS  Google Scholar 

  28. Persson, M., & Palcic, M. M. (2008). A high-throughput pH indicator assay for screening glycosyltransferase saturation mutagenesis libraries. Analytical Biochemistry, 378(1), 1–7.

    Article  CAS  Google Scholar 

  29. Prakash, I., Clos, J. F., & Chaturvedula, V. S. P. (2012). Stability of rebaudioside A under acidic conditions and its degradation products. Food Research International, 48(1), 65–75.

    Article  CAS  Google Scholar 

  30. Boels, I. C., Kleerebezem, M., & de Vos, W. M. (2003). Engineering of carbon distribution between glycolysis and sugar nucleotide biosynthesis in Lactococcus lactis. Applied and Environmental Microbiology, 69(2), 1129–1135.

    Article  CAS  Google Scholar 

  31. Rodriguez-Diaz, J., & Yebra, M. J. (2011). Enhanced UDP-glucose and UDP-galactose by homologous overexpression of UDP-glucose pyrophosphorylase in Lactobacillus casei. Journal of Biotechnology, 154(4), 212–215.

    Article  CAS  Google Scholar 

  32. Oh, J. S. (2008). Disaccharide synthesis using E. coli UDP-glucose regeneration system. Korean Journal of Biotechnology and Bioengineering, 23(6), 474–478.

    Google Scholar 

  33. Mao, Z., Shin, H. D., & Chen, R. R. (2006). Engineering the E. coli UDP-glucose synthesis pathway for oligosaccharide synthesis. Biotechnology Progress, 22(2), 369–374.

    Article  CAS  Google Scholar 

  34. Yan, Y., Li, Z., & Koffas, M. A. (2008). High-yield anthocyanin biosynthesis in engineered Escherichia coli. Biotechnology and Bioengineering, 100(1), 126–140.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Ethics declarations

Funding

This work was financially supported by PAPD, NSFC (grant number 21106068), and Doctoral Fund of Ministry of Education of China (grant number 20113221120002).

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, Y., Wang, Y. et al. Production of Rebaudioside A from Stevioside Catalyzed by the Engineered Saccharomyces cerevisiae . Appl Biochem Biotechnol 178, 1586–1598 (2016). https://doi.org/10.1007/s12010-015-1969-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1969-4

Keywords

Navigation