Skip to main content
Log in

Effective Biotransformation of Ethyl 4-Chloro-3-Oxobutanoate into Ethyl (S)-4-Chloro-3-Hydroxybutanoate by Recombinant E. coli CCZU-T15 Whole Cells in [ChCl][Gly]–Water Media

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To increase the biocatalytic activity of Escherichia coli CCZU-T15 whole cells, choline chloride/glycerol ([ChCl][Gly]) was firstly used as biocompatible solvent for the effective biotransformation of ethyl 4-chloro-3-oxobutanoate (COBE) into ethyl (S)-4-chloro-3-hydroxybutanoate [(S)-CHBE]. Furthermore, L-glutamine (150 mM) was added into [ChCl][Gly]–water ([ChCl][Gly] 12.5 vol%, pH 6.5) media instead of NAD+ for increasing the biocatalytic efficiency. To further improve the biosynthesis of (S)-CHBE (>99 % e.e.) by E. coli CCZU-T15 whole cells, Tween-80 (7.5 mM) was also added into this reaction media, and (S)-CHBE (>9 % e.e.) could be effectively synthesized from 2000 and 3000 mM COBE in the yields of 100 and 93.0 % by whole cells of recombinant E. coli CCZU-T15, respectively. TEM image indicated that the cell membrane was permeabilized and lost its integrity and when the cell was exposed to [ChCl][Gly]–water media with Tween-80. Clearly, this bioprocess has high potential for the effective biosynthesis of (S)-CHBE (>99 % e.e.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sun, J., Huang, J. H., Ding, X. Z., & Wang, P. (2016). Efficient enantioselective biocatalytic production of a chiral intermediate of Sitagliptin by a newly filamentous fungus isolate. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-016-2125-5.

    Google Scholar 

  2. Zhang, R., Xu, Y., Geng, Y. W., Wang, S. S., Sun, W. Y., & Xiao, R. (2010). Improved production of (R)-1-phenyl-1,2-ethanediol by a codon-optimized R-specific carbonyl reductase from Candida parapsilosis in Escherichia coli. Applied Biochemistry and Biotechnology, 160, 868–878.

    Article  CAS  Google Scholar 

  3. Ema, T., Yagasaki, H., Okita, N., Takeda, M., & Sakai, T. (2006). Asymmetric reduction of ketones using recombinant E. coli cells that produce a versatile carbonyl reductase with high enantioselectivity and broad substrate specificity. Tetrahedron, 62, 6143–6149.

    Article  CAS  Google Scholar 

  4. Ema, T., Ide, S., Okita, N., & Sakai, T. (2008). Highly efficient chemoenzymatic synthesis of methyl (R)-o-chloromandelate, a key intermediate for clopidogrel, via asymmetric reduction with recombinant Escherichia coli. Advanced Synthesis and Catalysis, 350, 2039–2044.

    Article  CAS  Google Scholar 

  5. He, Y. C., Zhang, D. P., Tao, Z. C., Lu, Y., Ding, Y., Liu, F., Zhu, Z. Z., Rui, H., Zheng, G. W., & Zhang, X. (2015). Improved biosynthesis of ethyl (S)-4-chloro-3-hydroxybutanoate by adding L-glutamine plus glycine instead of NAD+ in β-cyclodextrin-water system. Bioresource Technology, 182, 98–102.

    Article  CAS  Google Scholar 

  6. He, Y. C., Tao, Z. C., Di, J. H., Chen, L., Zhang, L. B., Zhang, D. P., Chong, G. G., Liu, F., Ding, Y., Jiang, C. X., & Ma, C. L. (2016). Effective asymmetric bioreduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate by recombinant E. coli CCZU-A13 in [Bmim]PF6-hydrolyzate media. Bioresource Technology, 214, 411–418.

    Article  CAS  Google Scholar 

  7. Cao, H., Mi, L., Ye, Q., Zhang, G. L., Yan, M., Wang, Y., Zhang, Y. Y., Li, X. M., Xu, L., Xiong, J., Ouyang, P. K., & Ying, H. J. (2011). Purification and characterization of a novel NADH-dependent carbonyl reductase from Pichia stipitis involved in biosynthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate. Bioresource Technology, 102, 1733–1739.

    Article  CAS  Google Scholar 

  8. He, Y. C., Yang, Z. X., Zhang, D. P., Tao, Z. C., Chen, C., Chen, Y. T., Guo, F., Xu, J. H., Huang, L., Chen, R. J., & Ma, X. F. (2014). Biosynthesis of ethyl (S)-4-chloro-3-hydroxybutanoate by NADH-dependent reductase from E. coli CCZU-Y10 discovered by genome data mining using mannitol as cosubstrate. Applied Biochemistry Biotechnology, 173, 2042–2053.

    Article  CAS  Google Scholar 

  9. Kizaki, N., Yasohara, Y., Hasegawa, J., Wada, M., Kataoka, M., & Shimizu, S. (2001). Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate by Escherichia coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes. Applied Microbiology and Biotechnology, 55, 590–595.

    Article  CAS  Google Scholar 

  10. Yamamoto, H., Mitsuhashi, K., Kimoto, N., Matsuyama, A., Esaki, N., & Kobayashi, Y. (2004). A novel NADH-dependent carbonyl reductase from Kluyveromyces aestuarii and comparison of NADH-regeneration system for the synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate. Bioscience, Biotechnology, and Biochemistry, 68, 638–649.

    Article  CAS  Google Scholar 

  11. Ye, Q., Yan, M., Yao, Z., Xu, L., Cao, H., Li, Z. J., Chen, Y., Li, S. Y., Bai, J. X., Xiong, J., Ying, H. J., & Ouyang, P. K. (2009). A new member of the short-chain dehydrogenases/reductases superfamily: purification, characterization and substrate specificity of a recombinant carbonyl reductase from Pichia stipitis. Bioresource Technology, 100, 6022–6027.

    Article  CAS  Google Scholar 

  12. Yu, M. A., Wei, Y. M., Zhao, L., Jiang, L., Zhu, X. B., & Qi, W. (2007). Bioconversion of ethyl 4-chloro-3-oxobutanoate by permeabilized fresh brewer’s yeast cells in the presence of allyl bromide. Journal of Industrial Microbiology & Biotechnology, 34, 151–156.

    Article  CAS  Google Scholar 

  13. Wang, L. J., Li, C. X., Ni, Y., Zhang, J., Liu, X., & Xu, J. H. (2011). Highly efficient synthesis of chiral alcohols with a novel NADH-dependent reductase from Streptomyces coelicolor. Bioresource Technology, 102, 7023–7028.

    Article  CAS  Google Scholar 

  14. Wang, Q. Y., Shen, L. H., Ye, T. T., Cao, D., Chen, R., Pei, X. L., Xie, T., Li, Y., Gong, W. B., & Yin, X. P. (2012). Overexpression and characterization of a novel (S)-specific extended short-chain dehydrogenase/reductase from Candida parapsilosis. Bioresource Technology, 123, 690–694.

    Article  CAS  Google Scholar 

  15. Ye, Q., Cao, H., Mi, L., Yan, M., Wang, Y., He, Q. T., Li, J., Xu, L., Chen, Y. J., Xiong, J., Ouyang, P. K., & Ying, H. J. (2010). Biosynthesis of (S)-4-chloro-3-hydroxybutanoate ethyl using Escherichia coli co-expressing a novel NADH-dependent carbonyl and a glucose dehydrogenase. Bioresource Technology, 101, 8911–8914.

    Article  CAS  Google Scholar 

  16. He, Y. C., Tao, Z. C., Zhang, X., Yang, Z. X., & Xu, J. H. (2014). Highly efficient synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate and its derivatives by a robust NADH dependent reductase from E. coli CCZU-K14. Bioresource Technology, 161, 461–464.

    Article  CAS  Google Scholar 

  17. Ishige, T., Honda, K., & Shimizu, S. (2005). Whole organism biocatalysis. Current Opinion in Chemical Biology, 9, 174–180.

    Article  CAS  Google Scholar 

  18. Ni, Y., Sun, Y. N., Li, H. D., Zhou, J. Y., & Sun, Z. H. (2013). Scalable biocatalytic synthesis of optically pure ethyl (R)-2-hydroxy-4-phenylbutyrate using a recombinant E. coli with high catalyst yield. Journal of Biotechnology, 168, 493–498.

    Article  CAS  Google Scholar 

  19. Nie, Y., Xu, Y., Hu, Q. S., & Xiao, R. (2009). A new strategy to improve the efficiency and sustainability of Candida parapsilosis catalyzing deracemization of (R,S)-1-phenyl-1,2-ethanediol under non-growing conditions: increase of NADPH availability. Journal of Microbiology and Biotechnology, 19, 65–71.

    CAS  Google Scholar 

  20. Li, N., Zhang, Y. Y., Ye, Q., Zhang, Y. Z., Chen, Y., Chen, X. C., Wu, J. L., Bai, J. X., Xie, J. J., & Ying, H. J. (2012). Effect of ribose, xylose, aspartic acid, glutamine and nicotinic acid on ethyl (S)-4-chloro-3-hydroxybutanoate synthesis by recombinant Escherichia coli. Bioresource Technology, 118, 572–575.

    Article  CAS  Google Scholar 

  21. Liu, L. M., Li, Y., Shi, Z. P., Du, G. C., & Chen, J. (2006). Enhancement of pyruvate productivity in Torulopsis glabrata: increase of NAD+ availability. Journal of Biotechnology, 126, 173–185.

    Article  CAS  Google Scholar 

  22. Ma, B., Pan, S. J., Zupancic, M. L., & Cormack, B. P. (2007). Assimilation of NAD+ precursors in Candida glabrata. Molecular Microbiology, 66, 14–25.

    Article  CAS  Google Scholar 

  23. Zhang, C. W., Xia, S. Q., & Ma, P. S. (2016). Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresource Technology, 219, 1–5.

    Article  CAS  Google Scholar 

  24. Papadopoulou, A. A., Katsoura, M. H., Chatzikonstantinou, A., Kyriakou, E., Polydera, A. C., Tzakos, A. G., & Stamatis, H. (2013). Enzymatic hybridization of α-lipoic acid with bioactive compounds in ionic solvents. Bioresource Technology, 136, 41–48.

    Article  CAS  Google Scholar 

  25. Xu, G. C., Ding, J. C., Han, R. Z., Dong, J. J., & Ni, Y. (2016a). Enhancing cellulose accessibility of corn Stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresource Technology, 203, 364–369.

    Article  CAS  Google Scholar 

  26. Xu, P., Du, P. X., Zong, M. H., Li, N., & Lou, W. Y. (2016b). Combination of deep eutectic solvent and ionic liquid to improve biocatalytic reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cell. Scientific Reports, 17(6), 26158.

    Article  Google Scholar 

  27. Xu, P., Cheng, J., Lou, W. Y., & Zong, M. H. (2015). Using deep eutectic solvents to improve the resolution of racemic 1-(4-methoxyphenyl)ethanol through Acetobacter sp. CCTCC M209061 cell-mediated asymmetric oxidation. RSC Advances, 5, 6357–6364.

    Article  CAS  Google Scholar 

  28. Zhao, H., Baker, G. A., & Holmes, S. (2011). New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel. Organic & Biomolecular Chemistry, 9, 1908–1916.

    Article  CAS  Google Scholar 

  29. Gorke, J. T., Srienc, F., & Kazlauskas, R. J. (2008). Hydrolase-catalyzed biotransformations in deep eutectic solvents. Chemical Communications, 14, 1235–1237.

    Article  Google Scholar 

  30. Su, J. H., Xu, J. H., & Wang, Z. L. (2010). Improving enzymatic production of Ginsenoside Rh2 from Rg3 by using nonionic surfactant. Applied Biochemistry and Biotechnology, 160, 1116–1123.

    Article  CAS  Google Scholar 

  31. Ni, Y., Zhou, J. Y., & Sun, Z. H. (2012). Production of a key chiral intermediate of Betahistine with a newly isolated Kluyveromyces sp. in an aqueous two-phase system. Process Biochemistry, 47, 1042–1048.

    Article  CAS  Google Scholar 

  32. Tang, T. X., Liu, Y., & Wu, Z. L. (2014). Characterization of a robust anti-Prelog short-chain dehydrogenase/reductase ChKRED20 from Chryseobacterium sp. CA49. Journal of Molecular Catalysis B: Enzymatic, 105, 82–88.

    Article  CAS  Google Scholar 

  33. Xu, H., Qin, Y., Huang, Z., & Liu, Z. (2014). Characterization and site-directed mutagenesis of an α-galactosidase from the deep-sea bacterium Bacillus megaterium. Enzyme and Microbial Technology, 56, 46–52.

    Article  CAS  Google Scholar 

  34. He, Y. C., Zhang, D. P., Lu, Y., Tao, Z. C., Ding, Y., Wang, L. Q., & Liu, F. (2015a). Biosynthesis of ethyl (S)-4-chloro-3-hydroxybutanoate with an NADH-dependent reductase (ClCR) discovered by genome data mining using a modified colorimetric screening strategy. Bioengineered, 6, 170–174.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21102011), Higher Education Natural Science Foundation of Jiangsu Province (No. 13KJB430025), Environmental Science Research Project of Jiangsu Province (No. 2013004), the Natural Science Foundation of Jiangsu Province (No. BK20141172), Yancheng City Industrial Science and Technology Support Project (2013), and the Teaching Reform Project of Changzhou University (No. GJY2014068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Huan, B., Zhang, HS. et al. Effective Biotransformation of Ethyl 4-Chloro-3-Oxobutanoate into Ethyl (S)-4-Chloro-3-Hydroxybutanoate by Recombinant E. coli CCZU-T15 Whole Cells in [ChCl][Gly]–Water Media. Appl Biochem Biotechnol 181, 1347–1359 (2017). https://doi.org/10.1007/s12010-016-2288-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2288-0

Keywords

Navigation