Skip to main content
Log in

Metal-Chelate Immobilization of Lipase onto Polyethylenimine Coated MCM-41 for Apple Flavor Synthesis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An enzyme immobilized on a mesoporous silica nanoparticle can serve as a multiple catalyst for the synthesis of industrially useful chemicals. In this work, MCM-41 nanoparticles were coated with polyethylenimine (MCM-41@PEI) and further modified by chelation of divalent metal ions (M = Co2+, Cu2+, or Pd2+) to produce metal-chelated silica nanoparticles (MCM-41@PEI-M). Thermomyces lanuginosa lipase (TLL) was immobilized onto MCM-41, MCM-41@PEI, and MCM-41@PEI-M by physical adsorption. Maximum immobilization yield and efficiency of 75 ± 3.5 and 65 ± 2.7% were obtained for MCM@PEI-Co, respectively. The highest biocatalytic activity at extremely acidic and basic pH (pH = 3 and 10) values were achieved for MCM-PEI-Co and MCM-PEI-Cu, respectively. Optimum enzymatic activity was observed for MCM-41@PEI-Co at 75 °C, while immobilized lipase on the Co-chelated support retained 70% of its initial activity after 14 days of storage at room temperature. Due to its efficient catalytic performance, MCM-41@PEI-Co was selected for the synthesis of ethyl valerate in the presence of valeric acid and ethanol. The enzymatic esterification yield for immobilized lipase onto MCM-41@PEI-Co was 60 and 53%, respectively, after 24 h of incubation in n-hexane and dimethyl sulfoxide media.

Divalent metal chelated polyethylenimine coated MCM-41 (MCM-41@PEI-M) was used for immobilization of Thermomyces lanuginosa lipase catalyzing green apple flavor preparation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Khoobi, M., Khalilvand-Sedagheh, M., Ramazani, A., Asadgol, Z., Forootanfar, H., & Faramarzi, M. A. (2014). Synthesis of polyethyleneimine (PEI) and β-cyclodextrin grafted PEI nanocomposites with magnetic cores for lipase immobilization and esterification. Journal of Chemical Technology and Biotechnology, 91, 375–384.

    Article  Google Scholar 

  2. Khoobi, M., Motevalizadeh, S. F., Asadgol, Z., Forootanfar, H., Shafiee, A., & Faramarzi, M. A. (2014). Synthesis of functionalized polyethylenimine-grafted mesoporous silica spheres and the effect of side arms on lipase immobilization and application. Biochemical Engineering Journal, 88, 131–141.

    Article  CAS  Google Scholar 

  3. Khoobi, M., Motevalizadeh, S. F., Asadgol, Z., Forootanfar, H., Shafiee, A., & Faramarzi, M. A. (2015). Polyethyleneimine-modified superparamagnetic Fe3O4 nanoparticles for lipase immobilization: characterization and application. Materials Chemistry and Physics., 149, 77–86.

    Article  Google Scholar 

  4. Motevalizadeh, S. F., Khoobi, M., Shabanian, M., Asadgol, Z., Faramarzi, M. A., & Shafiee, A. (2013). Polyacrolein/mesoporous silica nanocomposite: synthesis, thermal stability and covalent lipase immobilization. Materials Chemistry and Physics., 143, 76–84.

    Article  CAS  Google Scholar 

  5. Motevalizadeh, S. F., Khoobi, M., Sadighi, A., Khalilvand-Sedagheh, M., Pazhouhandeh, M., Ramazani, A., Faramarzi, M. A., & Shafiee, A. (2015). Lipase immobilization onto polyethylenimine coated magnetic nanoparticles assisted by divalent metal chelated ions. Journal of Molecular Catalysis B: Enzymatic, 120, 75–83.

    Article  CAS  Google Scholar 

  6. Cesarini, S., Infanzón, B., Pastor, F. I. J., & Diaz, P. (2014). Fast and economic immobilization methods described for non-commercial Pseudomonas lipases. BMC Biotechnology, 14, 27–27.

    Article  Google Scholar 

  7. DiCosimo, R., McAuliffe, J., Poulose, A. J., & Bohlmann, G. (2013). Industrial use of immobilized enzymes. Chemical Society Reviews, 42, 6437–6474.

    Article  CAS  Google Scholar 

  8. Singh, R. K., Tiwari, M. K., Singh, R., & Lee, J. K. (2013). From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. International Journal of Molecular Sciences, 14, 1232–1277.

    Article  CAS  Google Scholar 

  9. Sadighi, A., & Faramarzi, M. A. (2013). Congo red decolorization by immobilized laccase through chitosan nanoparticles on the glass beads. Journal of the Taiwan Institute of Chemical Engineers, 44, 156–162.

    Article  CAS  Google Scholar 

  10. Sun, X., Cai, X., Wang, R. Q., & Xiao, J. (2015). Immobilized trypsin on hydrophobic cellulose decorated nanoparticles shows good stability and reusability for protein digestion. Analytical Biochemistry, 477, 21–27.

    Article  CAS  Google Scholar 

  11. Sheldon, R. A. (2007). Enzyme immobilization: the quest for optimum performance. Advanced Synthesis & Catalysis, 349, 1289–1307.

    Article  CAS  Google Scholar 

  12. Zhang, Y., & Ji, C. (2010). Electro-induced covalent cross-linking of chitosan and formation of chitosan hydrogel films: its application as an enzyme immobilization matrix for use in a phenol sensor. Analytical Chemistry, 82, 5275–5281.

    Article  CAS  Google Scholar 

  13. Adlercreutz, P. (2013). Immobilisation and application of lipases in organic media. Chemical Society Reviews, 42, 6406–6436.

    Article  CAS  Google Scholar 

  14. Tang, Z., Luan, Y., Li, D., Du, H., Haddleton, D. M., & Chen, H. (2015). Surface immobilization of a protease through an inhibitor-derived affinity ligand: a bioactive surface with defensive properties against an inhibitor. Chemical Communications, 51, 10099–10102.

    Article  CAS  Google Scholar 

  15. Porath, J., Carlsson, J., Olsson, I., & Belfrage, G. (1975). Metal chelate affinity chromatography, a new approach to protein fractionation. Nature, 258, 598–599.

    Article  CAS  Google Scholar 

  16. Coulet, P., Carlsson, J., & Porath, J. (1981). Immobilization of enzymes on metal-chelate regenerable carriers. Biotechnology and Bioengineering, 23, 663–668.

    Article  CAS  Google Scholar 

  17. Uzun, K., Çevik, E., Şenel, M., & Baykal, A. (2013). Reversible immobilization of invertase on Cu-chelated polyvinylimidazole-grafted iron oxide nanoparticles. Bioprocess and Biosystems Engineering, 36, 1807–1816.

    Article  CAS  Google Scholar 

  18. Chen, T., Yang, W., Guo, Y., Yuan, R., Xu, L., & Yan, Y. (2014). Enhancing catalytic performance of β-glucosidase via immobilization on metal ions chelated magnetic nanoparticles. Enzyme and Microbial Technology, 63, 50–57.

    Article  Google Scholar 

  19. Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R. C., & Fernandez-Lafuente, R. (2015). Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnology Advances, 33(5), 435–456.

    Article  CAS  Google Scholar 

  20. Uygun, D. A., Uygun, M., Akgöl, S., & Denizli, A. (2015). Reversible adsorption of catalase onto Fe 3+ chelated poly (AAm-GMA)-IDA cryogels. Materials Science and Engineering C, 50, 379–385.

    Article  Google Scholar 

  21. Woo, E. J., Kwon, H. S., & Lee, C. H. (2015). Preparation of nano-magnetite impregnated mesocellular foam composite with a Cu ligand for His-tagged enzyme immobilization. Chemical Engineering Journal, 274, 1–8.

    Article  CAS  Google Scholar 

  22. Ghasemi, S., Sadighi, A., Heidary, M., Bozorgi-Koushalshahi, M., Habibi, Z., & Faramarzi, M. A. (2013). Immobilisation of lipase on the surface of magnetic nanoparticles and non-porous glass beads for regioselective acetylation of prednisolone. IET Nanobiotechnology, 7, 100–108.

    Article  CAS  Google Scholar 

  23. Huang, S., Li, X., Xu, L., Ke, C., Zhang, R., & Yan, Y. (2015). Protein-coated microcrystals from Candida rugosa lipase: its immobilization, characterization, and application in resolution of racemic ibuprofen. Applied Biochemistry and Biotechnology, 177, 36–47.

    Article  CAS  Google Scholar 

  24. Rauwerdink, A., & Kazlauskas, R. J. (2015). How the same core catalytic machinery catalyzes 17 different reactions: the serine-histidine-aspartate catalytic triad of α/β-hydrolase fold enzymes. ACS Catalysis, 5, 6153–6176.

    Article  CAS  Google Scholar 

  25. Guo, S., Xu, J., Pavlidis, I. V., Lan, D., Bornscheuer, U. T., Liu, J., & Wang, Y. (2015). Structure of product-bound SMG1 lipase: active site gating implications. FEBS Journal, 282, 4538–4547.

    Article  CAS  Google Scholar 

  26. Wang, Z., Li, S., Sun, L., Fan, J., & Liu, Z. (2013). Comparative analyses of lipoprotein lipase, hepatic lipase, and endothelial lipase, and their binding properties with known inhibitors. PloS One, 8, e72146.

    Article  CAS  Google Scholar 

  27. Schrag, J. D., Li, Y., Wu, S., & Cygler, M. (1991). Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum. Nature, 351, 761–764.

    Article  CAS  Google Scholar 

  28. Brady, L., Brzozowski, A. M., Derewenda, Z. S., Dodson, E., Dodson, G., Tolley, S., Turkenburg, J. P., Christiansen, L., Huge-Jensen, B., Norskov, L., Thim, L., & Menge, U. (1990). A serine protease triad forms the catalytic Centre of a triacylglycerol lipase. Nature, 343, 767–770.

    Article  CAS  Google Scholar 

  29. Aouf, C., Durand, E., Lecomte, J., Figueroa-Espinoza, M. C., Dubreucq, E., Fulcrand, H., & Villeneuve, P. (2014). The use of lipases as biocatalysts for the epoxidation of fatty acids and phenolic compounds. Green Chemistry, 16, 1740–1754.

    Article  CAS  Google Scholar 

  30. Drozdz, A., Erfurt, K., Bielas, R., & Chrobok, A. (2015). Chemo-enzymatic Baeyer-Villiger oxidation in the presence of Candida antarctica lipase B and ionic liquids. New Journal of Chemistry, 39, 1315–1321.

    Article  CAS  Google Scholar 

  31. Yuryev, R., Strompen, S., & Liese, A. (2011). Coupled chemo(enzymatic) reactions in continuous flow. Beilstein Journal of Organic Chemistry, 7, 1449–1467.

    Article  CAS  Google Scholar 

  32. Rønne, T. H., Yang, T., Mu, H., Jacobsen, C., & Xu, X. (2005). Enzymatic interesterification of butterfat with rapeseed oil in a continuous packed bed reactor. Journal of Agricultural and Food Chemistry, 53, 5617–5624.

    Article  Google Scholar 

  33. Shuai, W., Das, R. K., Naghdi, M., Brar, S. K., Verma, M. (2016). A review on the important aspects of lipase immobilization on nanomaterials. In press. doi:10.1002/bab.1515.

  34. Xie, W., & Ma, N. (2009). Immobilized lipase on Fe3O4 nanoparticles as biocatalyst for biodiesel production. Energy & Fuels, 23, 1347–1353.

    Article  CAS  Google Scholar 

  35. Xie, W., & Wang, J. (2014). Enzymatic production of biodiesel from soybean oil by using immobilized lipase on Fe3O4 /poly (styrene-methacrylic acid) magnetic microsphere as a biocatalyst. Energy & Fuels, 28, 2624–2631.

    Article  CAS  Google Scholar 

  36. Xie, W., & Wang, J. (2012). Immobilized lipase on magnetic chitosan microspheres for transesterification of soybean oil. Biomass & Bioenergy, 36, 373–380.

    Article  CAS  Google Scholar 

  37. Xie, W., & Zang, X. (2016). Immobilized lipase on core–shell structured Fe3O4–MCM-41 nanocomposites as a magnetically recyclable biocatalyst for interesterification of soybean oil and lard. Food Chemistry, 194, 1283–1292.

    Article  CAS  Google Scholar 

  38. Caro-Jara, N., Mundaca-Uribe, R., Zaror-Zaror, C., Carpinelli-Pavisic, J., Aranda-Bustos, M., & Peña-Farfal, C. (2013). Development of a bienzymatic amperometric glucose biosensor using mesoporous silica (MCM-41) for enzyme immobilization and its application on liquid pharmaceutical formulations. Electroanalysis, 25, 308–315.

    Article  CAS  Google Scholar 

  39. Gibson, L. (2014). Mesosilica materials and organic pollutant adsorption: part A removal from air. Chemical Society Reviews, 43, 5163–5172.

    Article  CAS  Google Scholar 

  40. Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Silica-based mesoporous organic–inorganic hybrid materials. Angewandte Chemie International Edition, 45, 3216–3251.

    Article  CAS  Google Scholar 

  41. Egodawatte, S., Datt, A., Burns, E. A., & Larsen, S. C. (2015). Chemical insight into the adsorption of chromium(iii) on iron oxide/mesoporous silica nanocomposites. Langmuir, 31, 7553–7562.

    Article  CAS  Google Scholar 

  42. Gao, Y., Xu, D., & Kispert, L. D. (2015). Hydrogen bond formation between the carotenoid canthaxanthin and the silanol group on MCM-41 surface. Journal of Physical Chemistry B, 119, 10488–10495.

    Article  CAS  Google Scholar 

  43. He, C., Ren, L., Zhu, W., Xu, Y., & Qian, X. (2015). Removal of mercury from aqueous solution using mesoporous silica nanoparticles modified with polyamide receptor. Journal of Colloid and Interface Science, 458, 229–234.

    Article  CAS  Google Scholar 

  44. Jiang, Y., Sun, W., Zhou, L., Ma, L., He, Y., & Gao, J. (2016). Improved performance of lipase immobilized on tannic acid-templated mesoporous silica nanoparticles. Applied Biochemistry and Biotechnology, 179, 1155–1169.

    Article  CAS  Google Scholar 

  45. Tarn, D., Ashley, C. E., Xue, M., Carnes, E. C., Zink, J. I., & Brinker, C. J. (2013). Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Accounts of . Chemical Research, 46, 792–801.

    Article  CAS  Google Scholar 

  46. Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., Liu, J., Che, E., Hu, L., Zhang, Q., Jiang, T., & Wang, S. (2015). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine, 11, 313–327.

    Article  CAS  Google Scholar 

  47. Tao, Y., Ju, E., Ren, J., & Qu, X. (2015). Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Advanced Materials, 27, 1097–1104.

    Article  CAS  Google Scholar 

  48. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  49. Brzozowski, A. M., Savage, H., Verma, C. S., Turkenburg, J. P., Lawson, D. M., Svendsen, A., & Patkar, S. (2000). Structural origins of the interfacial activation in Thermomyces (Humicola) lanuginosa lipase. Biochemistry, 39, 15071–15082.

    Article  CAS  Google Scholar 

  50. Saikia, B. J., & Parthasarathy, G. (2010). Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya. Journal of Modern Physics, 1, 206–210.

    Article  CAS  Google Scholar 

  51. White, L. D., & Tripp, C. P. (2000). Reaction of (3-Aminopropyl)dimethylethoxysilane with amine catalysts on silica surfaces. Journal of Colloid and Interface Science, 232, 400–407.

    Article  CAS  Google Scholar 

  52. Sutton, D., Durand, R., Shuai, X., & Gao, J. (2006). Poly (D, L-lactide-co-glycolide)/poly (ethylenimine) blend matrix system for pH sensitive drug delivery. Journal of Applied Polymer Science, 100, 89–96.

    Article  CAS  Google Scholar 

  53. Helios, K., Wysokinski, R., Pietraszko, A., & Michalska, D. (2011). Vibrational spectra and reinvestigation of the crystal structure of a polymeric copper(II)–orotate complex, [Cu(μ-HOr)(H2O)2]n: the performance of new DFT methods, M06 and M05-2X, in theoretical studies. Vibrational Spectroscopy, 55, 207–215.

    Article  CAS  Google Scholar 

  54. Han, D., Li, C., & Chen, H. (1998). The assignment of Co-C bond stretching vibrational frequency of CHsCo(DH)2H2O in IR and Raman spectra. Spectroscopy lett, 31, 1263–1277.

    Article  CAS  Google Scholar 

  55. Drelinkiewicz, A., Hasik, M., Quillard, S., & Paluszkiewicz, C. (1999). Infrared and Raman studies of palladium—nitrogen-containing polymers interactions. Journal of Molecular Structure, 511–512, 205–215.

    Article  Google Scholar 

  56. Kumar, A., Dhar, K., Kanwar, S. S., & Arora, P. K. (2016). Lipase catalysis in organic solvents: advantages and applications. Biological Procedures Online, 18, 1–11.

    Article  Google Scholar 

  57. Haas, K. L., & Franz, K. (2009). Application of metal coordination chemistry to explore and manipulate cell biology. Chemical Reviews, 109, 4921–4960.

    Article  CAS  Google Scholar 

  58. Alarcón-Payer, C., Pivetta, T., Choquesillo-Lazarte, D., González-Pérez, J. M., Crisponi, G., Castiñeiras, A., & Niclós-Gutiérrez, J. (2005). Thiodiacetato-copper (II) chelates with or without N-heterocyclic donor ligands: molecular and/or crystal structures of [Cu (tda)] n,[Cu (tda)(Him)2(H2O)] and [Cu (tda)(5Mphen)]·2H2O (Him = imidazole, 5Mphen = 5-methyl-1, 10-phenanthroline). Inorganica Chimica Acta, 358, 1918–1926.

    Article  Google Scholar 

  59. Gaberc-Porekar, V., & Menart, V. (2001). Perspectives of immobilized-metal affinity chromatography. Journal of Biochemical and Biophysical Methods, 49, 335–360.

    Article  CAS  Google Scholar 

  60. Zhang, Y., Ren, H., Wang, Y., Chen, K., Fang, B., & Wang, S. (2016). Bioinspired immobilization of glycerol dehydrogenase by metal ion-chelated polyethyleneimines as artificial polypeptides. Scientific Reports, 6, 24163.

    Article  CAS  Google Scholar 

  61. Da Silva, V. C. F., Contesini, F. J., & Carvalho, P. O. (2008). Characterization and catalytic activity of free and immobilized lipase from Aspergillus niger: a comparative study. Journal of the Brazilian Chemical Society, 19, 1468–1474.

    Article  CAS  Google Scholar 

  62. Wang, S.-G., Zhang, W.-D., Li, Z., Ren, Z.-Q., & Liu, H.-X. (2010). Lipase immobilized on the hydrophobic polytetrafluoroethene membrane with nonwoven fabric and its application in intensifying synthesis of butyl oleate. Applied Biochemistry and Biotechnology, 162, 2015–2026.

    Article  CAS  Google Scholar 

  63. Schulz, C., Ludwig, R., & Gorton, L. (2014). Polyethyleneimine as a promoter layer for the immobilization of cellobiose dehydrogenase from Myriococcum thermophilum on graphite electrodes. Analytical Chemistry, 86, 4256–4263.

    Article  CAS  Google Scholar 

  64. Ma, H., He, J., Evans, D. G., & Duan, X. (2004). Immobilization of lipase in a mesoporous reactor based on MCM-41. Journal of Molecular Catalysis B: Enzymatic, 30, 209–217.

    Article  CAS  Google Scholar 

  65. Zhu, K., Jutila, A., Tuominen, E. K. J., & Kinnunen, P. K. J. (2001). Effects of i-propanol on the structural dynamics of Thermomyces lanuginosa lipase revealed by tryptophan fluorescence. Protein Science, 10, 339–351.

    Article  CAS  Google Scholar 

  66. Swaminathan, R., Nath, U., Udgaonkar, J. B., Periasamy, N., & Krishnamoorthy, G. (1996). Motional dynamics of a buried tryptophan reveals the presence of partially structured forms during denaturation of barstar. Biochemistry, 35, 9150–9157.

    Article  CAS  Google Scholar 

  67. Ueda, E. K. M., Gout, P. W., & Morganti, L. (2003). Current and prospective applications of metal ion-protein binding. Journal of Chromatography A, 988, 1–23.

    Article  CAS  Google Scholar 

  68. Wang, Q., Cui, J., Guohui, L., Zhang, J., Huang, F., & Wei, Q. (2014). Laccase immobilization by chelated metal ion coordination chemistry. Polymers, 6, 2357–2370.

    Article  Google Scholar 

  69. Stergiou, P. Y., Foukis, A., Filippou, M., Koukouritaki, M., Parapouli, M., Theodorou, L. G., Hatziloukas, E., Afendra, A., Pandey, A., & Papamichael, E. M. (2013). Advances in lipase-catalyzed esterification reactions. Biotechnology Advances, 31, 1846–1859.

    Article  CAS  Google Scholar 

  70. Corbett, P. T., Leclaire, J., Vial, L., West, K. R., Wietor, J. L., Sanders, J. K. M., & Otto, S. (2006). Dynamic combinatorial chemistry. Chemical Reviews, 106, 3652–3711.

    Article  CAS  Google Scholar 

  71. Gandhi, N. N., Patil, N. S., Sawant, S. B., Joshi, J. B., Wangikar, P. P., & Mukesh, D. (2000). Lipase-catalyzed esterification. Catalysis Reviews, 42, 439–480.

    Article  CAS  Google Scholar 

  72. Torres, S., & Castro, G. R. (2004). Non-aqueous biocatalysis in homogeneous solvent systems. Food Technology and Biotechnology, 42, 271–277.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the grants from Tehran University of Medical Sciences, and Iran National Science Foundation (INSF) Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Ali Faramarzi or Mehdi Khoobi.

Additional information

This paper is dedicated to the memory of Professor Abbas Shafiee.

Electronic Supplementary Material

ESM 1

(DOCX 198 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadighi, A., Motevalizadeh, S.F., Hosseini, M. et al. Metal-Chelate Immobilization of Lipase onto Polyethylenimine Coated MCM-41 for Apple Flavor Synthesis. Appl Biochem Biotechnol 182, 1371–1389 (2017). https://doi.org/10.1007/s12010-017-2404-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2404-9

Keywords

Navigation