Skip to main content
Log in

Viscosity-Reducing Bulky-Salt Excipients Prevent Gelation of Protein, but Not Carbohydrate, Solutions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The problem of gelation of concentrated protein solutions, which poses challenges for both downstream protein processing and liquid formulations of pharmaceutical proteins, is addressed herein by employing previously discovered viscosity-lowering bulky salts. Procainamide-HCl and the salt of camphor-10-sulfonic acid with l-arginine (CSA-Arg) greatly retard gelation upon heating and subsequent cooling of the model proteins gelatin and casein in water: Whereas in the absence of additives the proteins form aqueous gels within several hours at room temperature, procainamide-HCl for both proteins and also CSA-Arg for casein prevent gel formation for months under the same conditions. The inhibition of gelation by CSA-Arg stems exclusively from the CSA moiety: CSA-Na was as effective as CSA-Arg, while Arg-HCl was marginally or not effective. The tested bulky salts did not inhibit (and indeed accelerated) temperature-induced gel formation in aqueous solutions of all examined carbohydrates―starch, agarose, alginate, gellan gum, and carrageenan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ecker, D. M., Jones, S. D., & Levine, H. L. (2015). The therapeutic monoclonal antibody market. MAbs, 7, 9–14.

    Article  CAS  Google Scholar 

  2. Hamrang, Z., Rattraye, N. J. W., & Pluene, A. (2013). Proteins behaving badly: emerging technologies in profiling biopharmaceutical aggregation in solution state. Trends in Biotechnology, 8, 448–458.

    Article  Google Scholar 

  3. Liu, J., Nguyen, M. D. H., Andya, J. D., & Shire, S. J. (2005). Reversible self-association increases the viscosity of a concentrated monoclonal antibody in aqueous solution. Journal of Pharmaceutical Sciences, 94, 1928–1940.

    Article  CAS  Google Scholar 

  4. Lowe, D., Dudgeon, K., Rouet, R., Schofield, P., Jermutus, L., & Christ, D. (2011). Aggregation, stability, and formulation of human antibody therapeutics. Advances in Protein Chemistry and Structural Biology, 84, 41–61.

    Article  CAS  Google Scholar 

  5. Rey, M. V., & Lang, D. A. (2011). Aggregates in monoclonal antibody manufacturing processes. Biotechnology and Bioengineering, 108, 1494–1508.

    Article  Google Scholar 

  6. Raut, A. S., & Kalonia, D. S. (2015). Opalescence in monoclonal antibody solutions and its correlation with intermolecular interactions in dilute and concentrated solutions. Journal of Pharmaceutical Sciences, 104, 1263–1274.

    Article  CAS  Google Scholar 

  7. Raut, A. S., & Kalonia, D. S. (2016). Pharmaceutical perspective on opalescence and liquid-liquid phase separation in protein solutions. Molecular Pharmaceutics, 13, 1431–1444.

    Article  CAS  Google Scholar 

  8. Trilisky, E., Gillespie, R., Osslund, T. D., & Vunnum, S. (2011). Crystallization and liquid-liquid phase separation of monoclonal antibodies and fc-fusion proteins: screening results. Biotechnology Progress, 27, 1054–1067.

    Article  CAS  Google Scholar 

  9. Amin, S., Barnett, G. V., Pathak, J. A., Roberts, C. J., & Sarangapani, P. S. (2014). Protein aggregation, particle formation, characterization and rheology. Current Opinion in Colloid & Interface Science, 19, 438–449.

    Article  CAS  Google Scholar 

  10. Wang, W., Nema, S., & Teagarden, D. (2010). Protein aggregation: pathways and influencing factors. International Journal of Pharmaceutics, 390, 89–99.

    Article  CAS  Google Scholar 

  11. Lewus, R. A., Darcy, P. A., Lenhoff, A. M., & Sandler, S. I. (2011). Interactions and phase behavior of a monoclonal antibody. Biotechnology Progress, 27, 280–289.

    Article  CAS  Google Scholar 

  12. Du, W., & Klibanov, A. M. (2011). Hydrophobic salts markedly diminish viscosity of concentrated protein solutions. Biotechnology and Bioengineering, 108, 632–636.

    Article  CAS  Google Scholar 

  13. Guo, Z., Chen, A., Nassar, R. A., Helk, B., Mueller, C., Tang, Y., Gupta, K., & Klibanov, A. M. (2012). Structure-activity relationship for hydrophobic salts as viscosity-lowering excipients for concentrated solutions of monoclonal antibodies. Pharmaceutical Research, 29, 3102–3109.

    Article  CAS  Google Scholar 

  14. Elkin, I., Weight, A. K., & Klibanov, A. M. (2015). Markedly lowering the viscosity of aqueous solutions of DNA by additives. International Journal of Pharmaceutics, 494, 66–72.

    Article  CAS  Google Scholar 

  15. Singh, S., Rao, K. V. R., Venugopal, K., & Manikandan, R. (2002). Alteration in dissolution characteristic of gelatin containing formulations: a review of the problem, test methods, and solutions. Pharmaceutical Technology, 26, 36–58.

    CAS  Google Scholar 

  16. Thomar, P., Benyahia, L., Durand, D., & Nicolai, T. (2014). The influence of adding monovalent salt on the rheology of concentrated sodium casein suspensions and the solubility of calcium caseinate. International Dairy Journal, 37, 48–54.

    Article  CAS  Google Scholar 

  17. Yadav, R. B., Kumar, N., & Yadav, B. S. (2016). Characterization of banana, potato, and rice starch blends for their physicochemical and pasting properties. Cogent Food and Agriculture, 2(1127873), 1–12.

    Google Scholar 

  18. Algarín, V. F., & Acevedo, A. (2010). Rheology and thermotropic gelation of aqueous sodium alginate solutions. Journal of Pharmaceutical Innovation, 5, 37–44.

    Article  Google Scholar 

  19. Picone, C. S. F., & Cunha, R. L. (2011). Influence of pH on formation and properties of gellan gels. Carbohydrate Polymers, 84, 662–668.

    Article  CAS  Google Scholar 

  20. Thrimawithana, T. R., Young, S., Dunstan, D. E., & Alany, R. G. (2010). Texture and rheological characterization of kappa and iota carrageenan in the presence of counter ions. Carbohydrate Polymers, 82, 69–77.

    Article  CAS  Google Scholar 

  21. Nordqvist, D., & Vilgis, T. A. (2011). Rheological study of the gelation process of agarose-based solutions. Food Biophysics, 6, 450–460.

    Article  Google Scholar 

  22. Djagny, K. B., Wang, Z., & Xu, S. (2001). Gelatin: a valuable protein for food and pharmaceutical industries. Critical Reviews in Food Science and Nutrition, 41, 481–492.

    Article  CAS  Google Scholar 

  23. Larson, A. M., Love, K., Weight, A. K., Crane, A., Langer, R. S., & Klibanov, A. M. (2015). Liquid protein formulations containing viscosity-lowering agents. US Pat Appl Publ US 20150071920 A1 20150312.

  24. Huang, H., & Sorensen, C. M. (1996). Shear effects during the gelation of aqueous gelatin. Physical Review E, 53, 5075–5078.

    Article  CAS  Google Scholar 

  25. Horne, D. S. (2002). Casein structure, self-assembly and gelation. Current Opinion in Colloid and Interface Science, 7, 456–461.

    Article  CAS  Google Scholar 

  26. Carr, A. J., & Munro, P. A. (2004). Reversible cold gelation of sodium caseinate solutions with added salt. Journal of Dairy Research, 71, 126–128.

    Article  CAS  Google Scholar 

  27. Dickinson, E. (1998). Proteins at interfaces and in emulsions, stability, rheology and interactions. Journal of the Chemical Society, Faraday Transactions, 94, 1657–1669.

    Article  CAS  Google Scholar 

  28. Rinaudo, M. (1993). Gelation of polysaccharides. Journal of Intelligent Material Systems and Structures, 4, 210–215.

    Article  Google Scholar 

  29. Saha, D., & Bhattacharya, S. (2010). Hydrocolloids as thickening and gelling agents in food: a critical review. Journal of Food Science and Technology, 47, 587–597.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Klibanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Klibanov, A.M. Viscosity-Reducing Bulky-Salt Excipients Prevent Gelation of Protein, but Not Carbohydrate, Solutions. Appl Biochem Biotechnol 182, 1491–1496 (2017). https://doi.org/10.1007/s12010-017-2413-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2413-8

Keywords

Navigation