Skip to main content
Log in

Biosynthesis of Heliotropin by a Novel Strain of Serratia liquefaciens

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present study has been conducted towards isolation of bacteria capable of producing heliotropin via microbial conversion. Strain ZMT-1 capable of synthesizing heliotropin efficiently was obtained by enrichment culture of soil samples and a high-throughput screening method, and identified as Serratia liquefaciens. Heliotropin was identified by gas chromatography and gas chromatography–mass spectrometry analysis. In addition, the culture medium was optimized to improve heliotropin yield by experimental designs. The application of a Plackett–Burman design found that NH4NO3 and K2HPO4•3H2O have significant effects on heliotropin production. Central composite design experiments were further used to predict the optimal concentrations of NH4NO3 and K2HPO4•3H2O, which were 1.0 and 0.5 g/l, respectively. After the optimization of cultural medium, heliotropin yield was increased by 4.52-fold when compared with the unoptimized minimal medium. This study is the first to report the biosynthesis of heliotropin by S. liquefaciens. S. liquefaciens ZMT-1 can produce heliotropin efficiently, indicating its potential as one heliotropin-producing strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gupta, C., Prakash, D., & Gupta, S. (2015). A biotechnological approach to microbial based perfumes and flavours. Journal of Microbiology and Experimentation, 2, 1–8.

    Article  Google Scholar 

  2. Akacha, N. B., & Gargouri, M. (2015). Microbial and enzymatic technologies used for the production of natural aroma compounds: synthesis, recovery modeling, and bioprocesses. Food and Bioproducts Processing, 94, 675–706.

    Article  Google Scholar 

  3. Krings, U., & Berger, R. G. (1998). Biotechnological production of flavours and fragrances. Applied Microbiology and Biotechnology, 49, 1–8.

    Article  CAS  Google Scholar 

  4. Han, D. F., Ryu, J. Y., Lee, H., & Hur, H. G. (2013). Bacterial biotransformation of phenylpropanoid compounds for producing flavor and fragrance compounds. Journal of Korean Society for Applied Biological Chemistry, 56, 125–133.

    Article  CAS  Google Scholar 

  5. Yamagishi, R., Yokomaku, A., Omoto, F., Misa, K., Takada, K., Yoshimatsu, S., ABE, A., & Hayashi, M. (2010). Sleep-improving effects of the aromatic compound heliotropin. Sleep and Biological Rhythms, 8, 254–260.

    Article  Google Scholar 

  6. Frosch, P. J., Johansen, J. D., Menne, T., Pirker, C., Rastogi, S. C., Andersen, K. E., Bruze, M., Goossens, A., Lepoittevin, J. P., & White, I. R. (2002). Further important sensitizers in patients sensitive to fragrances. Contact Dermatitis, 47, 279–287.

    Article  CAS  Google Scholar 

  7. Cortés-Salazar, F., Avella-Moreno, E., Cortés, M. T., & Suárez-Herrera, M. F. (2007). Study of the electrochemical oxidation process of 3,4-(methylenedioxy)phenylmethanol in non-aqueous solvents. Journal of Electroanalytical Chemistry, 606, 1–7.

    Article  Google Scholar 

  8. Bellardita, M., Loddo, V., Palmisano, G., Pibiri, I., Palmisano, L., & Augugliaro, V. (2014). Photocatalytic green synthesis of piperonal in aqueous TiO2 suspension. Applied Catalysis B: Environmental, 144, 607–613.

    Article  CAS  Google Scholar 

  9. Alvarez, H. M., Andrade, L. D., Pereira Jr., N., Muri, E. M. F., Horn Jr., A., Barbosa, D. P., & Antunes, O. A. C. (2007). Catalytic oxidation of isosafrol by vanadium complexes. Catalysis Communications, 8, 1336–1340.

    Article  CAS  Google Scholar 

  10. Li, X., Choi, Y., Yanakawa, Y., & Park, T. (2014). Piperonal prevents high-fat diet-induced hepatic steatosis and insulin resistance in mice via activation of adiponectin/AMPK pathway. International Journal of Obesity, 38, 140–147.

    Article  CAS  Google Scholar 

  11. Grimshaw, J., & Cheng, H. (1994). The conversion of isosafrole to piperonal and anethole to anisaldehyde electrochemical active manganese dioxide. Electrochimica Acta, 39, 497–499.

    Article  CAS  Google Scholar 

  12. María, A. L., & María, A. S. (2006). Production of food aroma compounds: microbial and enzymatic methodologies. Food Technology and Biotechnology, 44, 335–353.

    Google Scholar 

  13. Santos, A. S., Pereira Jr., N., Silva, I. I. D., & Antunes, O. A. C. (2003). Microbiological oxidation of isosafrole into piperonal. Applied Biochemistry and Biotechnology, 107, 649–658.

    Article  Google Scholar 

  14. Santos, A. S., Pereira Jr., N., Silva, I. I. D., & Antunes, O. A. C. (2004). Peroxidase catalyzed microbiological oxidation of isosafrol into piperonal. Process Biochemistry, 39, 2269–2275.

    Article  CAS  Google Scholar 

  15. Shimoni, E., Baasov, T., Ravid, U., & Shoham, Y. (2003). Biotransformations of propenylbenzenes by an Arthrobacter sp. and its t-anethole blocked mutants. Journal of Biotechnology, 105, 61–70.

    Article  CAS  Google Scholar 

  16. Doi, S., Hashimoto, Y., Tomita, C., Kumano, T., & Kobayashi, M. (2016). Discovery of piperonal-converting oxidase involved in the metabolism of a botanical aromatic aldehyde[J]. Scientific Reports-UK, 2016, 6. doi:10.1038/srep38021.

    Google Scholar 

  17. Shimoni, E., Ravid, U., & Shoham, Y. (2000). Isolation of a Bacillus sp. capable of transforming isoeugenol to vanillin. Journal of Biotechnology, 78, 1–9.

    Article  CAS  Google Scholar 

  18. Krebs, K. G., Heusser, D., & Wimmer, H. (1969). In E. Stahl (Ed.), Thin-layer chromatography, a laboratory handbook (pp. 854–909). Berlin: Springer.

    Chapter  Google Scholar 

  19. Shimoni, E., Baasov, T., Ravid, U., & Shoham, Y. (2002). The trans-anethole degradation pathway in an Arthrobacter sp.*. The Journal of Biological Chemistry, 277, 11866–11872.

    Article  CAS  Google Scholar 

  20. Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., & Williams, S. T. (1994). Bergey’s manual of determinative bacteriology (9th ed.). Baltimore: Williams and Wilkins.

    Google Scholar 

  21. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.

    Article  CAS  Google Scholar 

  22. Faveri, D. D., Torre, P., Aliakbarian, B., Domínguez, J. M., Perego, P., & Converti, A. (2007). Response surface modeling of vanillin production by Escherichia coli JM109pBB1. Biochemical Engineering Journal, 36, 268–275.

    Article  Google Scholar 

  23. Shieh, C. J., & Chang, S. W. (2001). Optimized synthesis of lipase-catalyzed hexyl acetate in n-hexane by response surface methodology. Journal of Agricultural and Food Chemistry, 49, 1203–1207.

    Article  CAS  Google Scholar 

  24. Rabenhorst, J. & Hopp, R. (1991). Verfahren zur herstellung von naturalichem vanillin. Deutsches Patentampt DE 39 20 A1.

  25. Hopp, R. (1993). Some highlights of H & R research. A review of nearly 120 years of research at Haarmann & Reimer. In R. Hopp & K. Mori (Eds.), Recent developments in flavor and fragrance Chemistry. New York: VCH.

    Google Scholar 

  26. Yao, R. S., Sun, M., Wang, C. L., & Deng, S. S. (2006). Degradation of phenolic compounds with hydrogen peroxide catalyzed by enzyme from Serratia Marcescens AB 90027. Water Research, 40, 3091–3098.

    Article  CAS  Google Scholar 

  27. Delaforge, M., Jaouen, M., & Bouille, G. (1999). Inhibitory metabolite complex formation of methylenedioxymethamphetamine with rat and human cytochrome P450. Particular involvement of CYP 2D. Environmental Toxicology and Pharmacology, 7, 153–158.

    Article  CAS  Google Scholar 

  28. Kakko, I., Toimela, T., & Tahti, H. (2000). Piperonyl butoxide potentiates the synaptosome ATPase inhibiting effect of pyretrin. Chemosphere, 40, 301–305.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support from the Fundamental Research Funds for the Central Universities (Nos. JUSRP 51504 and JUSRP 116031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pu Zheng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Table S1

(DOCX 16 kb)

Table S2

(DOCX 12 kb)

Figure S1

(DOCX 230 kb)

Figure S2

(DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Zheng, P., Chen, P. et al. Biosynthesis of Heliotropin by a Novel Strain of Serratia liquefaciens . Appl Biochem Biotechnol 183, 1282–1294 (2017). https://doi.org/10.1007/s12010-017-2497-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2497-1

Keywords

Navigation