Skip to main content
Log in

Bio-fabrication of Selenium Nanoparticles Using Baker’s Yeast Extract and Its Antimicrobial Efficacy on Food Borne Pathogens

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the current study, selenium nanoparticles (SeNPs) were biosynthesized via extract of baker’s yeast (Saccharomyces cerevisiae) for a green, economic, and eco-friendly strategy. The biosynthesized SeNPs were characterized using UV–vis, XRD, FTIR, DLS, and TEM. The particulates showed a spherical morphology with diameters between 4 and 51 nm; FTIR studies on NPs show functional groups corresponding to metabolites (proteins), which reduces and stabilizes the nanoparticle. Antimicrobial efficacy of biosynthesized SeNPs against food borne pathogens was assessed. SeNPs showed promising antimicrobial action against food borne pathogens (Escherichia coli, Staphylococcus aureus, Aspergillus fumigatus, and Aspergillus niger) with a minimal inhibitory concentration (MIC) of 62.5, 125, 250, and 500 µg/mL against Staphylococcus aureus, Escherichia coli, Aspergillus fumigatus, and Aspergillus niger, respectively. In conclusion, the biosynthesized SeNPs using extract of baker’s yeast are promising as a safe antimicrobial agent against food pathogens. Hence, the biosynthesized SeNPs using baker’s yeast extract exhibit antimicrobial activities and could be a useful efficacious antimicrobial agent in the preservation of food and medical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Bondi, M., Lauková, A., de Niederhausern, S., Messi, P., Papadopoulou, C. (2017). Natural preservatives to improve food quality and safety. Hindawi.

  2. Pellissery, A. J., Vinayamohan, P. G., Amalaradjou, M. A. R., & Venkitanarayanan, K. (2020). Spoilage bacteria and meat quality. In Meat quality analysis. (pp. 307–334). Elsevier. https://doi.org/10.1016/B978-0-12-819233-7.00017-3

  3. Ajaykumar, V., & Mandal, P. K. (2020). Modern concept and detection of spoilage in meat and meat products. In Meat Quality Analysis. (pp. 335–349). Elsevier. https://doi.org/10.1016/B978-0-12-819233-7.00018-5

  4. Sharaf, O. M., Al-Gamal, M. S., Ibrahim, G. A., Dabiza, N. M., Salem, S. S., El-ssayad, M. F., Youssef, A. M. (2019). Evaluation and characterization of some protective culture metabolites in free and nano-chitosan-loaded forms against common contaminants of Egyptian cheese. Carbohydrate Polymers, 223. https://doi.org/10.1016/j.carbpol.2019.115094

  5. Salem, S. S., & Fouda, A. (2021). Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biological Trace Element Research, 199(1), 344–370. https://doi.org/10.1007/s12011-020-02138-3

    Article  CAS  PubMed  Google Scholar 

  6. Wadhwani, S. A., Shedbalkar, U. U., Singh, R., & Chopade, B. A. (2016). Biogenic selenium nanoparticles: Current status and future prospects. Applied Microbiology and Biotechnology, 100(6), 2555–2566. https://doi.org/10.1007/s00253-016-7300-7

    Article  CAS  PubMed  Google Scholar 

  7. Shaheen, T. I., Salem, S. S., Fouda, A. (2021). Current advances in fungal nanobiotechnology: Mycofabrication and applications. In: A. Lateef, E. B. Gueguim-Kana, N. Dasgupta, S. Ranjan (Eds.), Microbial Nanobiotechnology: Principles and Applications (pp 113–143). Springer Singapore. https://doi.org/10.1007/978-981-33-4777-9_4

  8. Mohmed, A. A., Fouda, A., Elgamal, M. S., El-Din Hassan, S., Shaheen, T. I., & Salem, S. S. (2017). Enhancing of cotton fabric antibacterial properties by silver nanoparticles synthesized by new Egyptian strain Fusarium keratoplasticum A1–3. Egyptian Journal of Chemistry, 60, 63–71. https://doi.org/10.21608/ejchem.2017.1626.1137

    Article  Google Scholar 

  9. Shaheen, T. I., Fouda, A., & Salem, S. S. (2021). Integration of cotton fabrics with biosynthesized CuO nanoparticles for bactericidal activity in the terms of their cytotoxicity assessment. Industrial & Engineering Chemistry Research, 60(4), 1553–1563. https://doi.org/10.1021/acs.iecr.0c04880

    Article  CAS  Google Scholar 

  10. Badawy, A. A., Abdelfattah, N. A. H., Salem, S. S., Awad, M. F., Fouda, A. (2021). Efficacy assessment of biosynthesized copper oxide nanoparticles (Cuo‐nps) on stored grain insects and their impacts on morphological and physiological traits of wheat (triticum aestivum l.) plant. Biology, 10 (3). https://doi.org/10.3390/biology10030233

  11. Salem, S. S., El-Belely, E. F., Niedbała, G., Alnoman, M. M., Hassan, S. E. D., Eid, A. M., Shaheen, T. I., Elkelish, A., & Fouda, A. (2020). Bactericidal and in-vitro cytotoxic efficacy of silver nanoparticles (Ag-NPs) fabricated by endophytic actinomycetes and their use as coating for the textile fabrics. Nanomaterials, 10(10), 1–20. https://doi.org/10.3390/nano10102082

    Article  CAS  Google Scholar 

  12. Eid, A. M., Fouda, A., Niedbała, G., Hassan, S. E. D., Salem, S. S., Abdo, A. M., Hetta, H. F., & Shaheen, T. I. (2020). Endophytic streptomyces laurentii mediated green synthesis of Ag-NPs with antibacterial and anticancer properties for developing functional textile fabric properties. Antibiotics, 9(10), 1–18. https://doi.org/10.3390/antibiotics9100641

    Article  CAS  Google Scholar 

  13. Fouda, A., Salem, S. S., Wassel, A. R., Hamza, M. F., Shaheen, T. I. (2020). Optimization of green biosynthesized visible light active CuO/ZnO nano-photocatalysts for the degradation of organic methylene blue dye. Heliyon, 6 (9). https://doi.org/10.1016/j.heliyon.2020.e04896

  14. Fouda, A., El-Din Hassan, S., Salem, S. S., & Shaheen, T. I. (2018). In-vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized zinc oxide nanoparticles for medical textile applications. Microbial Pathogenesis, 125, 252–261. https://doi.org/10.1016/j.micpath.2018.09.030

    Article  CAS  PubMed  Google Scholar 

  15. Shakibaie, M., Salari Mohazab, N., & Ayatollahi Mousavi, S. A. (2015). Antifungal activity of selenium nanoparticles synthesized by Bacillus species Msh-1 against Aspergillus fumigatus and Candida albicans. Jundishapur J Microbiol, 8(9), e26381–e26381. https://doi.org/10.5812/jjm.26381

    Article  PubMed  PubMed Central  Google Scholar 

  16. Skalickova, S., Milosavljevic, V., Cihalova, K., Horky, P., Richtera, L., & Adam, V. (2017). Selenium nanoparticles as a nutritional supplement. Nutrition, 33, 83–90. https://doi.org/10.1016/j.nut.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  17. Fouda, A., Abdel-Maksoud, G., Abdel-Rahman, M. A., Salem, S. S., Hassan, S. E. D., & El-Sadany, M. A. H. (2019). Eco-friendly approach utilizing green synthesized nanoparticles for paper conservation against microbes involved in biodeterioration of archaeological manuscript. International Biodeterioration and Biodegradation, 142, 160–169. https://doi.org/10.1016/j.ibiod.2019.05.012

    Article  CAS  Google Scholar 

  18. Aref, M. S., Salem, S. S. (2020). Bio-callus synthesis of silver nanoparticles, characterization, and antibacterial activities via Cinnamomum camphora callus culture. Biocatalysis and Agricultural Biotechnology, 27. https://doi.org/10.1016/j.bcab.2020.101689

  19. Hammad, E. N., Salem, S. S., Zohair, M. M., Mohamed, A. A., & El-Dougdoug, W. (2022). Purpureocillium lilacinum mediated biosynthesis copper oxide nanoparticles with promising removal of dyes. Biointerface Research in Applied Chemistry, 12(2), 1397–1404. https://doi.org/10.33263/BRIAC122.13971404

    Article  CAS  Google Scholar 

  20. Saied, E., Eid, A. M., Hassan, S.E.-D., Salem, S. S., Radwan, A. A., Halawa, M., Saleh, F. M., Saad, H. A., Saied, E. M., & Fouda, A. (2021). The catalytic activity of biosynthesized magnesium oxide nanoparticles (MgO-NPs) for inhibiting the growth of pathogenic microbes, tanning effluent treatment, and chromium ion removal. Catalysts, 11(7), 821.

    Article  CAS  Google Scholar 

  21. Alsharif, S. M., Salem, S. S., Abdel-Rahman, M. A., Fouda, A., Eid, A. M., El-Din Hassan, S., Awad, M. A., Mohamed, A. A. (2020). Multifunctional properties of spherical silver nanoparticles fabricated by different microbial taxa. Heliyon, 6 (5). https://doi.org/10.1016/j.heliyon.2020.e03943

  22. Abu-Elghait, M., Hasanin, M., Hashem, A. H., & Salem, S. S. (2021). Ecofriendly novel synthesis of tertiary composite based on cellulose and myco-synthesized selenium nanoparticles: Characterization, antibiofilm and biocompatibility. International Journal of Biological Macromolecules, 175, 294–303. https://doi.org/10.1016/j.ijbiomac.2021.02.040

    Article  CAS  PubMed  Google Scholar 

  23. Mohamed, A. A., Abu-Elghait, M., Ahmed, N. E., Salem, S. S. (2021). Eco-friendly mycogenic synthesis of ZnO and CuO nanoparticles for in vitro antibacterial, antibiofilm, and antifungal applications. 199 (7), 2788–2799. https://doi.org/10.1007/s12011-020-02369-4

  24. Abdelmoneim, H. E. M., Wassel, M. A., Elfeky, A. S., Bendary, S. H., Awad, M. A., Salem, S. S., & Mahmoud, S. A. (2021). Multiple applications of CdS/TiO2 nanocomposites synthesized via microwave-assisted sol–gel. Journal of Cluster Science. https://doi.org/10.1007/s10876-021-02041-4

    Article  Google Scholar 

  25. Shaheen, T. I., Salem, S. S., & Zaghloul, S. (2019). A new facile strategy for multifunctional textiles development through in situ deposition of SiO2/TiO2 nanosols hybrid. Industrial and Engineering Chemistry Research, 58(44), 20203–20212. https://doi.org/10.1021/acs.iecr.9b04655

    Article  CAS  Google Scholar 

  26. Hassan, S. E. D., Fouda, A., Radwan, A. A., Salem, S. S., Barghoth, M. G., Awad, M. A., Abdo, A. M., & El-Gamal, M. S. (2019). Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. Journal of Biological Inorganic Chemistry. https://doi.org/10.1007/s00775-019-01654-5

    Article  PubMed  Google Scholar 

  27. Mohamed, A. A., Fouda, A., Abdel-Rahman, M. A., Hassan, S. E. D., El-Gamal, M. S., Salem, S. S., Shaheen, T. I. (2019). Fungal strain impacts the shape, bioactivity and multifunctional properties of green synthesized zinc oxide nanoparticles. Biocatalysis and Agricultural Biotechnology, 19. https://doi.org/10.1016/j.bcab.2019.101103

  28. Salem, S. S., Fouda, M. M. G., Fouda, A., Awad, M. A., Al-Olayan, E. M., Allam, A. A., & Shaheen, T. I. (2021). Antibacterial, cytotoxicity and larvicidal activity of green synthesized selenium nanoparticles using Penicillium corylophilum. Journal of Cluster Science, 32(2), 351–361. https://doi.org/10.1007/s10876-020-01794-8

    Article  CAS  Google Scholar 

  29. Song, X., Qiao, L., Yan, S., Chen, Y., Dou, X., & Xu, C. (2021). Preparation, characterization, and in vivo evaluation of anti-inflammatory activities of selenium nanoparticles synthesized by Kluyveromyces lactis GG799. Food & Function, 12(14), 6403–6415. https://doi.org/10.1039/D1FO01019K

    Article  CAS  Google Scholar 

  30. Garza-García, J. J. O., Hernández-Díaz, J. A., Zamudio-Ojeda, A., León-Morales, J. M., Guerrero-Guzmán, A., Sánchez-Chiprés, D. R., López-Velázquez, J. C., & García-Morales, S. (2021). The role of selenium nanoparticles in agriculture and food technology. Biological Trace Element Research. https://doi.org/10.1007/s12011-021-02847-3

    Article  PubMed  Google Scholar 

  31. Husen, A., & Siddiqi, K. S. (2014). Plants and microbes assisted selenium nanoparticles: Characterization and application. Journal of Nanobiotechnology, 12(1), 28. https://doi.org/10.1186/s12951-014-0028-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hosnedlova, B., Kepinska, M., Skalickova, S., Fernandez, C., Ruttkay-Nedecky, B., Peng, Q., Baron, M., Melcova, M., Opatrilova, R., & Zidkova, J. (2018). Nano-selenium and its nanomedicine applications: A critical review. International journal of nanomedicine, 13, 2107.

    Article  CAS  Google Scholar 

  33. Ndwandwe, B. K., Malinga, S. P., Kayitesi, E., & Dlamini, B. C. (2021). Advances in green synthesis of selenium nanoparticles and their application in food packaging. International Journal of Food Science & Technology, 56(6), 2640–2650. https://doi.org/10.1111/ijfs.14916

    Article  CAS  Google Scholar 

  34. Zeng, K., Chen, S., Song, Y., Li, H., Li, F., & Liu, P. (2013). Solvothermal synthesis of trigonal selenium with butterfly-like microstructure. Particuology, 11(5), 614–617. https://doi.org/10.1016/j.partic.2012.06.007

    Article  CAS  Google Scholar 

  35. Langi, B., Shah, C., Singh, K., Chaskar, A., Kumar, M., & Bajaj, P. N. (2010). Ionic liquid-induced synthesis of selenium nanoparticles. Materials Research Bulletin, 45(6), 668–671. https://doi.org/10.1016/j.materresbull.2010.03.005

    Article  CAS  Google Scholar 

  36. Yilmaz, M. T., İspirli, H., Taylan, O., Dertli, E. (2021). A green nano-biosynthesis of selenium nanoparticles with Tarragon extract: Structural, thermal, and antimicrobial characterization. LWT, 141, 110969

  37. Vinković Vrček, I. (2018) Selenium nanoparticles: Biomedical applications. In Michalke, B. (ed.), Selenium. Molecular and Integrative Toxicology. Springer. https://doi.org/10.1007/978-3-319-95390-8_21

  38. Piškur, J., & Compagno, C. (2014). Molecular mechanisms in yeast carbon metabolism. Springer.

    Book  Google Scholar 

  39. Banerjee, K., & Rai, V. R. (2018). A review on mycosynthesis, mechanism, and characterization of silver and gold nanoparticles. BioNanoScience, 8(1), 17–31.

    Article  Google Scholar 

  40. Faramarzi, S., Anzabi, Y., & Jafarizadeh-Malmiri, H. (2020). Nanobiotechnology approach in intracellular selenium nanoparticle synthesis using Saccharomyces cerevisiae—fabrication and characterization. Archives of Microbiology, 202(5), 1203–1209. https://doi.org/10.1007/s00203-020-01831-0

    Article  CAS  PubMed  Google Scholar 

  41. Wu, Z., Ren, Y., Liang, Y., Huang, L., Yang, Y., Zafar, A., Hasan, M., Yang, F., & Shu, X. (2021). Synthesis, characterization, immune regulation, and antioxidative assessment of yeast-derived selenium nanoparticles in cyclophosphamide-induced rats. ACS Omega, 6(38), 24585–24594. https://doi.org/10.1021/acsomega.1c03205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lian, S., Diko, C. S., Yan, Y., Li, Z., Zhang, H., Ma, Q., Qu, Y. (2019). Characterization of biogenic selenium nanoparticles derived from cell-free extracts of a novel yeast Magnusiomyces ingens. 3 Biotech, 9 (6), 221. https://doi.org/10.1007/s13205-019-1748-y

  43. Rasouli, M. (2019). Biosynthesis of selenium nanoparticles using yeast Nematospora coryli and examination of their anti-candida and anti-oxidant activities. IET Nanobiotechnology, 13(2), 214–218. https://doi.org/10.1049/iet-nbt.2018.5187

    Article  PubMed  Google Scholar 

  44. Gangadoo, S., Stanley, D., Hughes, R. J., Moore, R. J., & Chapman, J. (2017). The synthesis and characterisation of highly stable and reproducible selenium nanoparticles. Inorganic and Nano-Metal Chemistry, 47(11), 1568–1576.

    Article  CAS  Google Scholar 

  45. Bartosiak, M., Giersz, J., & Jankowski, K. (2019). Analytical monitoring of selenium nanoparticles green synthesis using photochemical vapor generation coupled with MIP-OES and UV–Vis spectrophotometry. Microchemical Journal, 145, 1169–1175. https://doi.org/10.1016/j.microc.2018.12.024

    Article  CAS  Google Scholar 

  46. Tugarova, A. V., Mamchenkova, P. V., Dyatlova, Y. A., & Kamnev, A. A. (2018). FTIR and Raman spectroscopic studies of selenium nanoparticles synthesised by the bacterium Azospirillum thiophilum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 192, 458–463.

    Article  CAS  Google Scholar 

  47. El-Sayyad, G. S., El-Bastawisy, H. S., Gobara, M., & El-Batal, A. I. (2020). Gentamicin-assisted mycogenic selenium nanoparticles synthesized under gamma irradiation for robust reluctance of resistant urinary tract infection-causing pathogens. Biological trace element research, 195(1), 323–342.

    Article  CAS  Google Scholar 

  48. Hashem, A. H., Khalil, A. M. A., Reyad, A. M., & Salem, S. S. (2021). Biomedical applications of mycosynthesized selenium nanoparticles using Penicillium expansum ATTC 36200. Biological Trace Element Research, 199, 3998–4008. https://doi.org/10.1007/s12011-020-02506-z

  49. Lucien, M. A. B., Canarie, M. F., Kilgore, P. E., Jean-Denis, G., Fénélon, N., Pierre, M., Cerpa, M., Joseph, G. A., Maki, G., & Zervos, M. J. (2021). Antibiotics and antimicrobial resistance in the COVID-19 era: Perspective from resource-limited settings. International Journal of Infectious Diseases, 104, 250–254.

    Article  CAS  Google Scholar 

  50. Bottery, M. J., Pitchford, J. W., & Friman, V.-P. (2021). Ecology and evolution of antimicrobial resistance in bacterial communities. The ISME Journal, 15(4), 939–948.

    Article  Google Scholar 

  51. Filipović, N., Ušjak, D., Milenković, M. T., Zheng, K., Liverani, L., Boccaccini, A. R., Stevanović M. M. (2021). Comparative study of the antimicrobial activity of selenium nanoparticles with different surface chemistry and structure. Frontiers in Bioengineering and Biotechnology, 8 (1591). https://doi.org/10.3389/fbioe.2020.624621

  52. Hashem, A. H., & Salem, S. S. (2021). Green and ecofriendly biosynthesis of selenium nanoparticles using Urtica dioica (stinging nettle) leaf extract: Antimicrobial and anticancer activity. Biotechnology Journal. https://doi.org/10.1002/biot.202100432

    Article  PubMed  Google Scholar 

  53. El-Saadony, M. T., Saad, A. M., Taha, T. F., Najjar, A. A., Zabermawi, N. M., Nader, M. M., AbuQamar, S. F., El-Tarabily, K. A., & Salama, A. (2021). Selenium nanoparticles from Lactobacillus paracasei HM1 capable of antagonizing animal pathogenic fungi as a new source from human breast milk. Saudi Journal of Biological Sciences, 28(12), 6782–6794. https://doi.org/10.1016/j.sjbs.2021.07.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mosallam, F. M., El-Sayyad, G. S., Fathy, R. M., & El-Batal, A. I. (2018). Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microbial Pathogenesis, 122, 108–116.

    Article  CAS  Google Scholar 

  55. Srivastava, N., & Mukhopadhyay, M. (2015). Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess and Biosystems Engineering, 38(9), 1723–1730. https://doi.org/10.1007/s00449-015-1413-8

    Article  CAS  PubMed  Google Scholar 

  56. Shubharani, R., Mahesh, M., & Yogananda Murthy, V. (2019). Biosynthesis and characterization, antioxidant and antimicrobial activities of selenium nanoparticles from ethanol extract of Bee Propolis. Journal of Nanomedicine & Nanotechnology, 10(1). https://doi.org/10.4172/2157-7439.1000522

  57. Tran, P. A., & Webster, T. J. (2011). Selenium nanoparticles inhibit Staphylococcus aureus growth. International Journal of Nanomedicine, 6, 1553.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salem S. Salem.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salem, S.S. Bio-fabrication of Selenium Nanoparticles Using Baker’s Yeast Extract and Its Antimicrobial Efficacy on Food Borne Pathogens. Appl Biochem Biotechnol 194, 1898–1910 (2022). https://doi.org/10.1007/s12010-022-03809-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03809-8

Keywords

Navigation