Skip to main content
Log in

Biodegradation of the Pesticides Bifenthrin and Fipronil by Bacillus Isolated from Orange Leaves

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The pyrethroid bifenthrin and the phenylpyrazole fipronil are widely employed insecticides, and their extensive use became an environmental issue. Therefore, this study evaluated their biodegradation employing bacterial strains of Bacillus species isolated from leaves of orange trees, aiming at new biocatalysts with high efficiency for use singly and in consortium. Experiments were performed in liquid culture medium at controlled temperature and stirring (32 °C, 130 rpm). After 5 days, residual quantification by HPLC-UV/Vis showed that Bacillus amyloliquefaciens RFD1C presented 93% biodegradation of fipronil (10.0 mg.L−1 initial concentration) and UPLC-HRMS analyses identified the metabolite fipronil sulfone. Moreover, Bacillus pseudomycoides 3RF2C showed a biodegradation of 88% bifenthrin (30.0 mg.L−1 initial concentration). A consortium composed of the 8 isolated strains biodegraded 81% fipronil and 51% bifenthrin, showing that this approach did not promote better results than the most efficient strains employed singly, although high rates of biodegradation were observed. In conclusion, bacteria of the Bacillus genus isolated from leaves of citrus biodegraded these pesticides widely applied to crops, showing the importance of the plant microbiome for degradation of toxic xenobiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated and analyzed during this study are included in this article.

References

  1. Pignati, W. A., Lima, F. A. N. S., Lara, S. S., Correa, M. L. M., Barbosa, J. R., Leão, L. H. C., & Pignatti, M. G. (2017). Distribuição espacial do uso de agrotóxicos no Brasil: Uma ferramenta para a Vigilância em Saúde. Ciência & Saúde Coletiva, 22(10), 3281–3293. https://doi.org/10.1590/1413-812320172210.17742017

    Article  Google Scholar 

  2. Lindsey, A. P. J., Murugan, S., & Renitta, R. E. (2020). Microbial disease management in agriculture: Current status and future prospects. Biocatalysis and Agricultural Biotechnology, 23, 101468. https://doi.org/10.1016/J.BCAB.2019.101468

    Article  Google Scholar 

  3. Braga, A. R. C., de Rosso, V. V., Harayashiki, C. A. Y., Jimenez, P. C., & Castro, Í. B. (2020). Global health risks from pesticide use in Brazil. Nature Food, 1(6), 312–314. https://doi.org/10.1038/s43016-020-0100-3

    Article  CAS  Google Scholar 

  4. Brazilian Institute of Geography and Statistics. (2022). Statistics of Agricultural Production. Retrieved from https://sidra.ibge.gov.br/home/lspa. Accessed 2 Apr 2022

  5. Brazilian Institute of the Environment and Renewable Natural Resources. (2021). Pesticides marketing reports. Retrieved from http://ibama.gov.br/agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos. Accessed 2 Apr 2022

  6. Birolli, W. G., Souza, L. I., Porto, A. L. M., & Rodrigues-Filho, E. (2020). Biodegradation and Bioremediation of Pyrethroids, a recent update and Experiments in Soil. In J. Ruijten (Ed.), Pyrethroids: Exposure, Applications and Resistance (pp. 1–89). Nova Science Publishers.

    Google Scholar 

  7. Ross, M. K., & Carr, R. L. (2019). Pyrethroid insecticides: An update. In J. O. Nriagu (Ed.), Encyclopedia of Environmental Health (Vol. 2, 2nd ed., pp. 429–435). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.11819-6

  8. Bhatt, P., Huang, Y., Zhan, H., & Chen, S. (2019). Insight into microbial applications for the biodegradation of pyrethroid insecticides. Frontiers in Microbiology, 10, 1778. https://doi.org/10.3389/FMICB.2019.01778/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ware, G. W., & Whitacre, D. M. (2004). The Pesticide Book. The Pesticide Book. Willoughby, Ohio: Meister Pub (6 th.). Meister Pub Co.

  10. Gonçalves, S., Vasconcelos, M. W., Mota, T. F. M., Lopes, J. M. H., Guimaraes, L. J., Miglioranza, K. S. B., & Ghisi, N. C. (2022). Identifying global trends and gaps in research on pesticide fipronil: A scientometric review. Environmental Science and Pollution Research. https://doi.org/10.1007/S11356-022-21135-8

    Article  PubMed  Google Scholar 

  11. Singh, N. S., Sharma, R., Singh, S. K., & Singh, D. K. (2021). A comprehensive review of environmental fate and degradation of fipronil and its toxic metabolites. Environmental Research, 199, 111316. https://doi.org/10.1016/J.ENVRES.2021.111316

    Article  CAS  PubMed  Google Scholar 

  12. Nortox Corporation. (2022). Package leaflet Bifenthrin 100 EC Nortox. Retrieved from https://solucoes.nortox.com.br/hc/pt-br/article_attachments/11383644058900/Bifentrina_100_EC_Nortox_-_Bula_VER_08_-_02.12.2022_.pdf. Accessed 23 Dec 2022

  13. Nortox Corporation. (2020). Package leaflet fipronil Nortox. Retrieved from https://solucoes.nortox.com.br/hc/pt-br/article_attachments/10941111686548/Fipronil_Nortox_800_WG_-_Bula_-_VER_27_-_18.11.2022.pdf. Accessed 23 Dec 2022

  14. Richardson, J. R., Fitsanakis, V., Westerink, R. H. S., & Kanthasamy, A. G. (2019). Neurotoxicity of Pesticides. Acta Neuropathologica, 138(3), 343. https://doi.org/10.1007/S00401-019-02033-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carvalho, S. M., Belzunces, L. P., Carvalho, G. A., Brunet, J. L., & Badiou-Beneteau, A. (2013). Enzymatic biomarkers as tools to assess environmental quality: A case study of exposure of the honeybee Apis mellifera to insecticides. Environmental Toxicology and Chemistry, 32(9), 2117–2124. https://doi.org/10.1002/ETC.2288

    Article  CAS  PubMed  Google Scholar 

  16. Main, A. R., Hladik, M. L., Webb, E. B., Goyne, K. W., & Mengel, D. (2020). Beyond neonicotinoids – Wild pollinators are exposed to a range of pesticides while foraging in agroecosystems. Science of the Total Environment, 742, 140436. https://doi.org/10.1016/J.SCITOTENV.2020.140436

  17. Gammon, D. W., Liu, Z., Chandrasekaran, A., El-Naggar, S. F., Kuryshev, Y. A., & Jackson, S. (2019). Pyrethroid neurotoxicity studies with bifenthrin indicate a mixed Type I/II mode of action. Pest Management Science, 75(4), 1190. https://doi.org/10.1002/PS.5300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gargouri, B., Bhatia, H. S., Bouchard, M., Fiebich, B. L., & Fetoui, H. (2018). Inflammatory and oxidative mechanisms potentiate bifenthrin-induced neurological alterations and anxiety-like behavior in adult rats. Toxicology Letters, 294, 73–86. https://doi.org/10.1016/J.TOXLET.2018.05.020

    Article  CAS  PubMed  Google Scholar 

  19. Gargouri, B., Yousif, N. M., Bouchard, M., Fetoui, H., & Fiebich, B. L. (2018). Inflammatory and cytotoxic effects of bifenthrin in primary microglia and organotypic hippocampal slice cultures. Journal of Neuroinflammation, 15(1), 159. https://doi.org/10.1186/S12974-018-1198-1

  20. Frank, D. F., Miller, G. W., Harvey, D. J., Brander, S. M., Geist, J., Connon, R. E., & Lein, P. J. (2018). Bifenthrin causes transcriptomic alterations in mTOR and ryanodine receptor-dependent signaling and delayed hyperactivity in developing zebrafish (Danio rerio). Aquatic Toxicology (Amsterdam, Netherlands), 200, 50. https://doi.org/10.1016/J.AQUATOX.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  21. Gutta, S., Prasad, J. D., Gunasekaran, K., & Iyadurai, R. (2019). Hepatotoxicity and neurotoxicity of Fipronil poisoning in human: A case report. Journal of Family Medicine and Primary Care, 8(10), 3437. https://doi.org/10.4103/JFMPC.JFMPC_486_19

    Article  PubMed  PubMed Central  Google Scholar 

  22. Guelfi, M. M., Tavares, M. A., Mingatto, F. E., & Maioli, M. A. (2015). Citotoxicity of fipronil on hepatocytes isolated from rat and effects of its biotransformation. Brazilian Archives of Biology and Technology, 58(6), 843–853. https://doi.org/10.1590/S1516-89132015060298

    Article  CAS  Google Scholar 

  23. Al-Badran, A. A., Fujiwara, M., Gatlin, D. M., & Mora, M. A. (2018). Lethal and sub-lethal effects of the insecticide fipronil on juvenile brown shrimp Farfantepenaeus aztecus. Scientific Reports, 8(1), 10769. https://doi.org/10.1038/S41598-018-29104-3

  24. Song, X., Wang, X., Liao, G., Pan, Y., Qian, Y., & Qiu, J. (2021). Toxic effects of fipronil and its metabolites on PC12 cell metabolism. Ecotoxicology and Environmental Safety, 224, 112677. https://doi.org/10.1016/J.ECOENV.2021.112677

  25. Zhou, Z., Wu, X., Lin, Z., Pang, S., Mishra, S., & Chen, S. (2021). Biodegradation of fipronil: Current state of mechanisms of biodegradation and future perspectives. Applied Microbiology and Biotechnology, 105(20), 7695–7708. https://doi.org/10.1007/S00253-021-11605-3

    Article  CAS  PubMed  Google Scholar 

  26. Savi, G. D., Piacentini, K. C., Bortolotto, T., & Scussel, V. M. (2016). Degradation of bifenthrin and pirimiphos-methyl residues in stored wheat grains (Triticum aestivum L.) by ozonation. Food Chemistry, 203, 246–251. https://doi.org/10.1016/J.FOODCHEM.2016.02.069

    Article  CAS  PubMed  Google Scholar 

  27. Mandal, K., Singh, B., Jariyal, M., & Gupta, V. K. (2014). Bioremediation of fipronil by a Bacillus firmus isolate from soil. Chemosphere, 101, 55–60. https://doi.org/10.1016/J.CHEMOSPHERE.2013.11.043

    Article  CAS  PubMed  Google Scholar 

  28. Reiß, F., Kiefer, N., Noll, M., & Kalkhof, S. (2021). Application, release, ecotoxicological assessment of biocide in building materials and its soil microbial response. Ecotoxicology and Environmental Safety, 224, 112707. https://doi.org/10.1016/J.ECOENV.2021.112707

    Article  PubMed  Google Scholar 

  29. Kumar, R., Singh, B., & Gupta, V. K. (2012). Biodegradation of fipronil by paracoccus sp. in different types of soil. Bulletin of Environmental Contamination and Toxicology, 88(5), 781–787. https://doi.org/10.1007/S00128-012-0578-Y/TABLES/2

    Article  CAS  PubMed  Google Scholar 

  30. Gangola, S., Sharma, A., Joshi, S., Bhandari, G., Prakash, O., Govarthanan, M., … Bhatt, P. (2022). Novel mechanism and degradation kinetics of pesticides mixture using Bacillus sp. strain 3C in contaminated sites. Pesticide Biochemistry and Physiology, 181, 104996. https://doi.org/10.1016/J.PESTBP.2021.104996

  31. Tang, J., Hu, Q., Liu, B., Lei, D., Chen, T., Sun, Q., … Zhang, Q. (2019). Efficient biodegradation of 3-phenoxybenzoic acid and pyrethroid pesticides by the novel strain Klebsiella pneumoniae BPBA052. Canadian Journal of Microbiology, 65(11), 795–804. https://doi.org/10.1139/CJM-2019-0183

  32. Song, H., Zhou, Z., Liu, Y., Deng, S., & Xu, H. (2015). Kinetics and mechanism of fenpropathrin biodegradation by a newly isolated Pseudomonas aeruginosa sp. strain JQ-41. Current Microbiology, 71(3), 326–332. https://doi.org/10.1007/S00284-015-0852-4/TABLES/2

    Article  CAS  PubMed  Google Scholar 

  33. At, K., Karthikeyan, S., & Thanga V, S. G. (2019). Occurrence and microbial degradation of fipronil residues in tropical highland rhizosphere soils of Kerala, India. Soil and Sediment Contamination, 28(4), 360–379. https://doi.org/10.1080/15320383.2019.1578336

    Article  CAS  Google Scholar 

  34. Gajendiran, A., & Abraham, J. (2017). Biomineralisation of fipronil and its major metabolite, fipronil sulfone, by Aspergillus glaucus strain AJAG1 with enzymes studies and bioformulation. 3 Biotech, 7(3), 212. https://doi.org/10.1007/S13205-017-0820-8

  35. Bhatt, P., Bhatt, K., Sharma, A., Zhang, W., Mishra, S., & Chen, S. (2021). Biotechnological basis of microbial consortia for the removal of pesticides from the environment. Critical Reviews in Biotechnology, 41, 317–338. https://doi.org/10.1080/07388551.2020.1853032

    Article  PubMed  Google Scholar 

  36. Bhatt, P., Rene, E. R., Huang, Y., Wu, X., Zhou, Z., Li, J., … Chen, S. (2022). Indigenous bacterial consortium-mediated cypermethrin degradation in the presence of organic amendments and Zea mays plants. Environmental Research, 212, 113137. https://doi.org/10.1016/J.ENVRES.2022.113137

  37. Ren, X., Zeng, G., Tang, L., Wang, J., Wan, J., Liu, Y., … Deng, R. (2018). Sorption, transport and biodegradation – An insight into bioavailability of persistent organic pollutants in soil. Science of the Total Environment, 610–611, 1154–1163. https://doi.org/10.1016/J.SCITOTENV.2017.08.089

  38. Bose, S., Kumar, P. S., Vo, D. V. N., Rajamohan, N., & Saravanan, R. (2021). Microbial degradation of recalcitrant pesticides: A review. Environmental Chemistry Letters, 19(4), 3209–3228. https://doi.org/10.1007/S10311-021-01236-5

    Article  CAS  Google Scholar 

  39. Dos Anjos, C. S. (2018). Biodegradation of the pesticides esfenvalerate, spirodiclofen, thiamethoxam and imidacloprid by bacterial strains isolated from the reforested cerrado and citriculture of the orange. University of São Paulo.

  40. Birolli, W. G., Arai, M. S., Nitschke, M., & Porto, A. L. M. (2019). The pyrethroid (±)-lambda-cyhalothrin enantioselective biodegradation by a bacterial consortium. Pesticide Biochemistry and Physiology, 156, 129–137. https://doi.org/10.1016/j.pestbp.2019.02.014

    Article  CAS  PubMed  Google Scholar 

  41. Birolli, W. G., Borges, E. M., Nitschke, M., Romão, L. P. C., & Porto, A. L. M. (2016). Biodegradation pathway of the pyrethroid pesticide esfenvalerate by bacteria from different biomes. Water, Air, and Soil Pollution, 227(8), 271. https://doi.org/10.1007/s11270-016-2968-y

  42. Birolli, W. G., Alvarenga, N., Seleghim, M. H. R., & Porto, A. L. M. (2016). Biodegradation of the pyrethroid pesticide esfenvalerate by marine-derived fungi. Marine Biotechnology, 18(4), 511–520. https://doi.org/10.1007/s10126-016-9710-z

    Article  CAS  PubMed  Google Scholar 

  43. Akbar, S., Sultan, S., & Kertesz, M. (2015). Bacterial community analysis of cypermethrin enrichment cultures and bioremediation of cypermethrin contaminated soils. Journal of Basic Microbiology, 55(7), 819–829. https://doi.org/10.1002/JOBM.201400805

    Article  CAS  PubMed  Google Scholar 

  44. Chen, S., Chang, C., Deng, Y., An, S., Dong, Y. H., Zhou, J., … Zhang, L. H. (2014). Fenpropathrin biodegradation pathway in bacillus sp. DG-02 and its potential for bioremediation of pyrethroid-contaminated soils. Journal of Agricultural and Food Chemistry, 62(10), 2147–2157. https://doi.org/10.1021/JF404908J/SUPPL_FILE/JF404908J_SI_001.PDF

  45. Akbar, S., Sultan, S., & Kertesz, M. (2015). Determination of cypermethrin degradation potential of soil bacteria along with plant growth-promoting characteristics. Current Microbiology, 70(1), 75–84. https://doi.org/10.1007/S00284-014-0684-7/TABLES/4

    Article  CAS  PubMed  Google Scholar 

  46. Chen, S., Deng, Y., Chang, C., Lee, J., Cheng, Y., Cui, Z., … Zhang, L. H. (2015). Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19. Scientific Reports, 5, 8784. https://doi.org/10.1038/SREP08784

  47. Zhang, Q., Li, S., Ma, C., Wu, N., Li, C., & Yang, X. (2018). Simultaneous biodegradation of bifenthrin and chlorpyrifos by Pseudomonas sp. CB2. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 53(5), 304–312. https://doi.org/10.1080/03601234.2018.1431458

    Article  CAS  PubMed  Google Scholar 

  48. Abdi, D. E., Owen, J. S., Brindley, J. C., Birnbaum, A. C., Wilson, P. C., Hinz, F. O., … Fernandez, R. T. (2020). Nutrient and pesticide remediation using a two-stage bioreactor-adsorptive system under two hydraulic retention times. Water Research, 170, 115311. https://doi.org/10.1016/J.WATRES.2019.115311

  49. dos Anjos, C. S., Birolli, W. G., & Porto, A. L. M. (2020). Biodegradation of the pyrethroid pesticide esfenvalerate by a bacterial consortium isolated from Brazilian Savannah. Journal of the Brazilian Chemical Society, 31(8), 1654–1660. https://doi.org/10.21577/0103-5053.20200051

    Article  CAS  Google Scholar 

  50. Li, H., Ma, Y., Yao, T., Ma, L., Zhang, J., & Li, C. (2022). Biodegradation pathway and detoxification of β-cyfluthrin by the bacterial consortium and its bacterial community structure. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/ACS.JAFC.2C00574

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chen, S., Luo, J., Hu, M., Lai, K., Geng, P., & Huang, H. (2012). Enhancement of cypermethrin degradation by a coculture of Bacillus cereus ZH-3 and Streptomyces aureus HP-S-01. Bioresource Technology, 110, 97–104. https://doi.org/10.1016/j.biortech.2012.01.106

    Article  CAS  PubMed  Google Scholar 

  52. Tomazini, R., Saia, F. T., van der Zaan, B., Grosseli, G. M., Fadini, P. S., de Oliveira, R. G. M., … Langenhoff, A. A. M. (2021). Biodegradation of fipronil: Transformation products, microbial characterisation and toxicity assessment. Water, Air, and Soil Pollution, 232(3), 123. https://doi.org/10.1007/S11270-021-05071-W

  53. Uniyal, S., Paliwal, R., Verma, M., Sharma, R. K., & Rai, J. P. N. (2016). Isolation and characterization of fipronil degrading Acinetobacter calcoaceticus and Acinetobacter oleivorans from rhizospheric zone of Zea mays. Bulletin of Environmental Contamination and Toxicology, 96(6), 833–838. https://doi.org/10.1007/S00128-016-1795-6

    Article  CAS  PubMed  Google Scholar 

  54. Uniyal, S., Paliwal, R., Sharma, R. K., & Rai, J. P. N. (2016). Degradation of fipronil by Stenotrophomonas acidaminiphila isolated from rhizospheric soil of Zea mays. 3 Biotech, 6(1), 1–10. https://doi.org/10.1007/S13205-015-0354-X

    Article  CAS  Google Scholar 

  55. Cappelini, L. T. D., Alberice, J. v., Eugênio, P. F. M., Pozzi, E., Urbaczek, A. C., Diniz, L. G. R., … Vieira, E. M. (2018). Burkholderia thailandensis: The main bacteria biodegrading fipronil in fertilized soil with assessment by a QuEChERS/GC-MS method. Journal of the Brazilian Chemical Society, 29(9), 1934–1943. https://doi.org/10.21577/0103-5053.20180069

  56. do Prado, C. C. A., Pereira, R. M., Durrant, L. R., Scorza Júnior, R. P., & Bonfá, M. R. L. (2022). Fipronil biodegradation and metabolization by Bacillus megaterium strain E1. Journal of Chemical Technology & Biotechnology, 97(2), 474–481. https://doi.org/10.1002/JCTB.6758

    Article  CAS  Google Scholar 

  57. Bhatt, P., Sharma, A., Rene, E. R., Kumar, A. J., Zhang, W., & Chen, S. (2021). Bioremediation of fipronil using Bacillus sp. FA3: Mechanism, kinetics and resource recovery potential from contaminated environments. Journal of Water Process Engineering, 39, 101712. https://doi.org/10.1016/J.JWPE.2020.101712

    Article  Google Scholar 

  58. Bhatt, P., Rene, E. R., Kumar, A. J., Gangola, S., Kumar, G., Sharma, A., … Chen, S. (2021). Fipronil degradation kinetics and resource recovery potential of Bacillus sp. strain FA4 isolated from a contaminated agricultural field in Uttarakhand, India. Chemosphere, 276, 130156. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130156

  59. Lara-Moreno, A., Morillo, E., Merchán, F., Madrid, F., & Villaverde, J. (2022). Bioremediation of a trifluralin contaminated soil using bioaugmentation with novel isolated bacterial strains and cyclodextrin. Science of The Total Environment, 840, 156695. https://doi.org/10.1016/J.SCITOTENV.2022.156695

    Article  CAS  PubMed  Google Scholar 

  60. Alexandrino, D. A. M., Mucha, A. P., Tomasino, M. P., Almeida, C. M. R., & Carvalho, M. F. (2021). Combining culture-dependent and independent approaches for the optimization of epoxiconazole and fludioxonil-degrading bacterial consortia. Microorganisms, 9(10), 2109. https://doi.org/10.3390/MICROORGANISMS9102109

  61. Bhatti, S., Satyanarayana, G. N. V., Patel, D. K., & Satish, A. (2019). Bioaccumulation, biotransformation and toxic effect of fipronil in Escherichia coli. Chemosphere, 231, 207–215. https://doi.org/10.1016/J.CHEMOSPHERE.2019.05.124

    Article  CAS  PubMed  Google Scholar 

  62. Wolfand, J. M., Lefevre, G. H., & Luthy, R. G. (2016). Metabolization and degradation kinetics of the urban-use pesticide fipronil by white rot fungus Trametes versicolor. Environmental Science: Processes & Impacts, 18(10), 1256–1265. https://doi.org/10.1039/C6EM00344C

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express gratitude for the support offered by PhD Rodrigo Facchini Magnani from Fundecitrus, and to PhD Charlene Souza dos Anjos from University of São Paulo that isolated the employed bacterial strains.

Funding

The author J. G. Viana thanks to São Paulo Research Foundation (FAPESP) for her master's degree scholarship, grant #2017/24429–7, and Coordination for the Improvement of Higher Education Personnel (CAPES) for additional support. W. G. Birolli is grateful to CNPq for his doctorate's degree scholarship, grant #141656/2014–0, and to FAPESP for his postdoctoral scholarship, grant #2017/19721–0. A. L. M. Porto thanks to FAPESP, grant #2014/18257–0, and National Council for Scientific and Technological Development (CNPq), grant #400202/2014–0, for research funding.

Author information

Authors and Affiliations

Authors

Contributions

MSc Juliana G. Viana: conceptualization, methodology, validation, software, formal analysis, investigation, data curation, writing—original draft, writing—review and editing, visualization. PhD Willian G. Birolli: conceptualization, methodology, writing—review and editing, visualization. Prof. André L. M. Porto: conceptualization, methodology, resources, writing—review and editing, visualization, supervision, project administration, funding acquisition.

Corresponding authors

Correspondence to Juliana Galan Viana or André Luiz Meleiro Porto.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

We declare that the information in this manuscript has not been published elsewhere nor is it under consideration by any other journal. Furthermore, it is the consensus of all authors to submit this manuscript for possible publication in ABB.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3423 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viana, J.G., Birolli, W.G. & Porto, A.L.M. Biodegradation of the Pesticides Bifenthrin and Fipronil by Bacillus Isolated from Orange Leaves. Appl Biochem Biotechnol 195, 3295–3310 (2023). https://doi.org/10.1007/s12010-022-04294-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04294-9

Keywords

Navigation