Skip to main content

Advertisement

Log in

Identification of Novel Protein Targets of Prodigiosin for Breast Cancer Using Inverse Virtual Screening Methods

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Prodigiosin (PG) is chemically formulated as 4-methoxy-5-[(5-methyl-4-pentyl-2H-pyrrol-2ylidene)methyl]-2,2′-bi-1H-pyrrole and it is an apoptotic agent. Only a few protein targets for PG have been identified so far for regulating various diseases; nevertheless, finding more PG targets is crucial for novel drug discovery research. A bioinformatics method was applied in this work to find additional potential PG targets. Initially, a text mining analysis was conducted to determine the relationship between PG and a variety of metabolic processes. One hundred sixteen proteins from the KEGG pathway were selected for the docking study. Inverse virtual screening was performed by Discovery Studio software 4.1 using CHARMm-based docking tool. Twelve proteins are screened out of 116 because their CDOCKER interaction energy is larger than − 40.22 kcal/mol. The best docking score with PG was reported to be − 44.25 kcal/mol, − 44.99 kcal/mol, and − 40.91 kcal/mol for three novel proteins, such as human epidermal growth factor-2 (HER-2), mitogen-activated protein kinase (MEK), and S6 kinase protein (S6K) respectively. The interactions in the S6K/PG complex are predominantly hydrophobic; however, hydrogen bond interactions can be identified in the MEK/PG and HER-2/PG complexes. The root-mean-square deviation (RMSD) and key interaction score system (KISS) were further used to validate the docking approach. The docking approach employed in this work has a low RMSD value (2.44 Å) and a high KISS score (0.5), indicating that it is significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data generated or obtained during this research's experiment is available to the associated author (Tania Paul), and can be made available to this journal at a fair cost upon request.

References

  1. Sharma, R., Bhunia, B., Mondal, A., Bandyopadhyay, T. K., Devi, I., Oinam, G., Prasanna, R., Abraham, G., & Tiwari, O. N. (2020). Ultrasonics sonochemistry., 60, 104762.

    Article  CAS  PubMed  Google Scholar 

  2. Nath, P. C., Bandyopadhyay, T. K., Mahata, N., Pabbi, S., Tiwari, O. N., Indira, M., & Bhunia, B. (2022). Biomass Conversion and Biorefinery., 1, 1–12.

    Google Scholar 

  3. Paul, T., Bandyopadhyay, T. K., Mondal, A., Tiwari, O. N., Muthuraj, M., & Bhunia, B. (2020). Biomass Conversion and Biorefinery., 20, 1–23.

    Google Scholar 

  4. Paul, T., Bandyopadhyay, T. K., Mondal, A., & Bhunia, B. (2020). Journal of the Indian Chemical Society, 97, 434–439.

    CAS  Google Scholar 

  5. Paul, T., Mondal, A., Bandyopadhyay, T. K., & Bhunia, B. (2022). Biomass Conversion and Biorefinery, 1, 1–20.

  6. Ibrahim, D., Nazari, T. F., Kassim, J., & Lim, S.-H. (2014). Journal Applied Pharmacology Science, 4, 1–6.

    Article  Google Scholar 

  7. Papireddy, K., Smilkstein, M., & Kelly, J. (2011). Journal of Medicinal Chemistry, 54, 5296–5306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Do, H. N., & Nguyen, T. H. (2014). Journal of Applied Pharmaceutical. Science, 4, 21.

    Google Scholar 

  9. Kim, D. K., Park, Y. K., Lee, J. S., Kim, F. J. H., Jeong, H. Y., Kim, B. S., & Lee, C. H. (2006). Online Journal of Biological Sciences. Journal of microbiology and biotechnology., 16, 1912–1918.

    CAS  Google Scholar 

  10. Khanafari, A., Assadi, M. M., & Fakhr, F. A. (2006). Online Journal of Biological Sciences., 6, 1–13.

    Article  Google Scholar 

  11. Kawasaki, T., Sakurai, F., & Hayakawa, Y. (2008). Journal of natural products., 71, 1265–1267.

    Article  CAS  PubMed  Google Scholar 

  12. Darshan, N., & Manonmani, H. (2016). AMB Express, 6, 1–12.

    Article  Google Scholar 

  13. Siva, R., Subha, K., Bhakta, D., Ghosh, A., & Babu, S. (2012). Applied Biochemistry and Biotechnology., 166, 187–196.

    Article  CAS  PubMed  Google Scholar 

  14. Elahian, F., Moghimi, B., Dinmohammadi, F., Ghamghami, M., Hamidi, M., & Mirzaei, S. A. (2013). DNA and Cell Biology., 32, 90–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kavitha, R., Aiswariya, S., & Ratnavali, C. M. J. (2010). International Journal of PharmTech Research, 2, 784–787.

  16. Paul, T., Mondal, A., Bandyopadhyay, T. K., Mahata, N., & Bhunia, B. (2022). Applied Biochemistry and Biotechnology, 1, 1–16.

  17. Pérez-Tomás, R., Montaner, B., Llagostera, E., & Soto-Cerrato, V. (2003). Biochemical Pharmacology, 66, 1447–1452.

  18. Williamson, N. R., Fineran, P. C., Leeper, F. J., & Salmond, G. P. (2006). Nature Reviews Microbiology, 4, 887–899.

  19. Regourd, J., Al-Sheikh Ali, A., & Thompson, A. J. (2007). Journal of Medicinal Chemistry50, 1528–1536.

  20. Hong, B., Prabhu, V. V., Zhang, S., van den Heuvel, A. P. J., Dicker, D. T., Kopelovich, L., & El-Deiry, W. S. (2014). Cancer Research, 74, 1153–1165.

  21. Montaner, B., Navarro, S., Piqué, M., Vilaseca, M., Martinell, M., Giralt, E., Gil, J., & Pérez‐Tomás, R. (2000). British Journal of Pharmacology, 131, 585–593.

  22. Bhardwaj, P., Biswas, G., Mahata, N., Ghanta, S., & Bhunia, B. (2022). Chemosphere, 293, 133550.

    Article  CAS  PubMed  Google Scholar 

  23. Wu, G., Robertson, D. H., Brooks, C. L., III., & Vieth, M. (2003). Journal of computational chemistry., 24, 1549–1562.

    Article  CAS  PubMed  Google Scholar 

  24. Sulimov, A. V., Kutov, D. C., Katkova, E. V., Ilin, I. S., & Sulimov, V. B. (2017). Journal of Molecular Graphics and Modelling., 78, 139–147.

    Article  CAS  PubMed  Google Scholar 

  25. Gagnon, J. K., Law, S. M., & Brooks, C. L., III. (2016). Journal of computational chemistry., 37, 753–762.

    Article  CAS  PubMed  Google Scholar 

  26. Venkatachalam, C. M., Jiang, X., Oldfield, T., & Waldman, M. (2003). Journal of Molecular Graphics and Modelling., 21, 289–307.

    Article  CAS  PubMed  Google Scholar 

  27. Naresh, R., Nazeer, Y., & Palani, S. (2013). Medicinal Chemistry Research., 22, 1938–1947.

    Article  CAS  Google Scholar 

  28. Bhardwaj, P., Biswas, G., & Bhunia, B. (2019). Chemosphere, 235, 976–984.

    Article  CAS  PubMed  Google Scholar 

  29. Ostacolo, C., Di Sarno, V., Lauro, G., Pepe, G., Musella, S., Ciaglia, T., Vestuto, V., Autore, G., Bifulco, G., & Marzocco, S. (2019). European journal of medicinal chemistry., 167, 61–75.

    Article  CAS  PubMed  Google Scholar 

  30. Krishna, P. S., Vani, K., Prasad, M. R., Samatha, B., Surya, N. S. V. S. S., Bindu, L. H., Charya, M. A. S., & Shetty, P. R. (2013). Springerplus., 2, 1–6.

    Article  CAS  Google Scholar 

  31. D’Mello, P., Gadhwal, M. K., Joshi, U., & Shetgiri, P. (2011). International Journal of Pharmacy and Pharmaceutical Sciences, 3, 33–40.

  32. Hsieh, H. Y., Shieh, J. J., Chen, C. J., Pan, M. Y., Yang, S. Y., Lin, S. C., Chang, J. S., Lee, A. Y. L., & Chang, C. C. (2012). British journal of pharmacology., 166, 2095–2108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hong, B., Prabhu, V. V., Zhang, S., van den Heuvel, A. P. J., Dicker, D. T., Kopelovich, L., & El-Deiry, W. S. (2014). Cancer research., 74, 1153–1165.

    Article  CAS  PubMed  Google Scholar 

  34. Anwar, M. M., Shalaby, M., Embaby, A. M., Saeed, H., Agwa, M. M., & Hussein, A. (2020). Scientific Reports., 10, 1–15.

    Article  Google Scholar 

  35. Montaner, B., Navarro, S., Piqué, M., Vilaseca, M., Martinell, M., Giralt, E., Gil, J., & Pérez-Tomás, R. (2000). British journal of pharmacology., 131, 585–593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Darshan, N., & Manonmani, H. (2015). Journal of food science and technology., 52, 5393–5407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu, C.-H., Lin, S.-C., Yang, S.-Y., Pan, M.-Y., Lin, Y.-W., Hsu, C.-Y., Wei, Y.-H., Chang, J.-S., & Chang, C.-C. (2012). Toxicology Letters, 212, 83–89.

  38. Zhao, K., Li, D., Cheng, G., Zhang, B., Han, J., Chen, J., Wang, B., Li, M., Xiao, T., Zhang, J., Zhou, D., Jin, Z., & Fan, X. (2019). International Journal of Molecular Sciences, 20, 5458.

  39. Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M. (2011). Current computer-aided drug design., 7, 146–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gutierrez, C., & Schiff, R. (2011). Archives of pathology & laboratory medicine., 135, 55–62.

    Article  Google Scholar 

  41. McCubrey, J. A., Steelman, L. S., Chappell, W. H., Abrams, S. L., Wong, E. W., Chang, F., Lehmann, B., Terrian, D. M., Milella, M., & Tafuri, A. (2007). Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1773, 1263–1284.

    Article  CAS  PubMed  Google Scholar 

  42. Holz, M. K. (2012). Cell Cycle, 11, 3159–3165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Udatha, D. G., Sugaya, N., Olsson, L., & Panagiotou, G. (2012). Scientific reports., 2, 323.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hevener, K. E., Zhao, W., Ball, D. M., Babaoglu, K., Qi, J., White, S. W., & Lee, R. E. (2009). Journal of chemical information and modeling., 49, 444–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Udatha, D. G., Sugaya, N., Olsson, L., & Panagiotou, G. (2012). Scientific reports., 2, 1–8.

    Article  Google Scholar 

  46. Wang, S.-L., Nguyen, V. B., Doan, C. T., Tran, T. N., Nguyen, M. T., & Nguyen, A. D. (2020). Molecules, 25, 2744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Miss. Tania Paul, Mr. Prashant Bhardwaj, Dr. Tarun Kanti Bandyopadhyay, and Dr. Biswanath Bhunia would like to express their heartfelt gratitude to the Director of NIT Agartala for his constant support and encouragement.

Funding

This material is based upon the work supported by the National Institute of Technology, Agartala, India. Dr. Bhunia would like to acknowledge DST, Govt. of India, for Fast Track Young Scientist financial support (SERC/LS-167/2012). Tania Paul would like to express their gratitude to the Department of Bio Engineering, NIT Agartala, for financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by Tania Paul and Prashant Bhardwaj, and analysis was performed by Biswanath Bhunia and Tarun Kanti Bandyopadhyay. The first draft of the manuscript was written by Abhijit Mondal and Nibedita Mahata and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Biswanath Bhunia.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

The authors affirm that human research participants provided informed consent for publication of all data provided in the manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 41 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, T., Bhardwaj, P., Mondal, A. et al. Identification of Novel Protein Targets of Prodigiosin for Breast Cancer Using Inverse Virtual Screening Methods. Appl Biochem Biotechnol 195, 7236–7254 (2023). https://doi.org/10.1007/s12010-023-04426-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04426-9

Keywords

Navigation