Skip to main content
Log in

Effects of Selenium Supplementation on Antioxidant Defense and Glucose Homeostasis in Experimental Diabetes Mellitus

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the effects of different forms of Se supplementation on the antioxidant defense and glucose homeostasis in experimental diabetes. Sodium selenate (SS) or selenomethionine (SM) were administered (2 μmol Se kg−1 day−1) via orogastric route to streptozotocine (STZ)-induced diabetic rats in addition to basal diet for 12 weeks. Glucose levels in whole blood, glutathione peroxidase (GSH-Px) activity in erythrocytes, Se and fructosamine levels in plasma were evaluated monthly. Plasma Se levels increased significantly in all diabetic groups compared to basal measurements, being more prominent in SM group [p(SM3/SM0) = 0.018]. The increase in GSH-Px activities was significant at the end of the second month in SS [p(SS2/SS0) = 0.028], whereas at the end of the third month in SM the value was lower [p(SM3/SM0) = 0.018] and the unsupplemented diabetic control (DC) groups, p(DC3/DC0) = 0.012. Glucose increased significantly only in DC group. Fructosamine increased gradually in all diabetic groups, being significant in DC and SS groups. At the end of the third month, highest fructosamine levels were observed in SS group, which were significantly higher than the SM group [p(SM/SS) = 0.010]. In conclusion, Se augmented the antioxidant defense by increasing GSH-Px activity and this effect was more prominent when Se was supplemented as SM, which exerted positive effects also on glucose homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barceolux DG (1999) Selenium. J Toxicol Clin Toxicol 37(2):145–172

    Article  Google Scholar 

  2. Shenkin A, Baines M, Fell GS, Lyon TDG (2006) Vitamins and trace elements. In: Burtis CA, Ashwood ER, Bruns DE (eds) Tietz textbook of clinical chemistry and molecular diagnostics. Elseivier Saunders, St. Louis, MO, pp 1075–1164

    Google Scholar 

  3. Brigelius FR, Lotzer K, Maurer S, Shultz M, Leist M (1995–1996) Utilization of selenium from different chemical entities for selenoprotein biosynthesis by mammalian cell lines. BioFactors 5(3):125–131

    Google Scholar 

  4. Daniels LA (1996) Selenium metabolism and bioavailability. Biol Trace Elem Res 54(3):185–199

    PubMed  CAS  Google Scholar 

  5. Brown KM, Pickard K, Nicol F, Beckett GJ, Duthie GG, Arthur JR (2000) Effects of organic and inorganic selenium supplementation on selenoenzyme activity in blood lymphocytes, granulocytes, platelets and erythroctes. Clin Sci (Colch) 98(5):593–599

    Article  CAS  Google Scholar 

  6. Holben DH, Smith AM (1999) The diverse role of selenium within selenoproteins: a review. J Am Diet Assoc 99(7):836–843

    Article  PubMed  CAS  Google Scholar 

  7. Reddi S, Bollineni JS (2001) Selenium-deficient diet induces renal oxidative stress and injury via TGF-β1 in normal and diabetic rats. Kidney Int 59:1342–1353

    Article  PubMed  CAS  Google Scholar 

  8. Stapleton SR (2000) Selenium: an insulin-mimetic. Cell Mol Life Sci 57(13–14):1874–1879

    Article  PubMed  CAS  Google Scholar 

  9. Ghosh R, Mukherjee B, Chatterjee M (1994) A novel effect of selenium on streptozotosin-induced diabetic mice. Diabetes Res 25(4):165–171

    PubMed  CAS  Google Scholar 

  10. McNeill JH, Delgatty HL, Battell ML (1991) Insulinlike effects of sodium selenate in streptozotosin-induced diabetic rats. Diabetes 40:1675–1678

    Article  PubMed  CAS  Google Scholar 

  11. Battell ML, Delgatty HL, McNeill JH (1998) Sodium selenate corrects glucose tolerance and heart function in STZ diabetic rats. Mol Cell Biochem 179(1–2):27–34

    Article  PubMed  CAS  Google Scholar 

  12. Becker DJ, Reul B, Özcelikay AT, Buchet JP, Henquin JC, Brichard SM (1996) Oral selenate improves glucose homeostasis and partly reverses abnormal expression of liver glycolytic and gluconeogenic enzymes in diabetic rats. Diabetologia 39:3–11

    Article  PubMed  CAS  Google Scholar 

  13. Bonnefort RD (2004) The role of antioxidant micronutrients in the prevention of diabetic complications. Treat Endocrinol 3(1):41–52

    Article  Google Scholar 

  14. Can B, Ulusu NN, Kilinc K, Acan LN, Saran Y, Turan B (2005) Selenium treatment protects diabetes-induced biochemical and ultrastuctural alterations in liver tissue. Biol Trace Elem Res 105(1–3):135–150

    Article  PubMed  CAS  Google Scholar 

  15. Armstrong M, Chestnutt JE, Gormley MJ, Young IS (1996) The effect of dietary treatment on lipid peroxidation and antioxidant status in newly diagnosed noninsulin dependent diabetes. Free Radic Biol Med 21(5):719–726

    Article  PubMed  CAS  Google Scholar 

  16. Kowluru RA, Engerman RL, Kern TS (2000) Diabetes-induced metabolic abnormalities in myocardium: effect of antioxidant therapy. Free Radic Res 32(1):67–74

    Article  PubMed  CAS  Google Scholar 

  17. Kahler W, Kuklinski B, Ruhlmann C, Plotz C (1993) Diabetes mellitus—a free radical-associated disease: results of adjuvant antioxidant supplementation. Z Gesamte Inn Med 48(5):223–232

    PubMed  CAS  Google Scholar 

  18. Odetti P, Aragno I, Rolandi R, Garibaldi S, Valentini S, Cosso L, Traverso N, Cottalasso D, Pronzato MA, Marinari UM (2000) Scanning force microscopy reveals structural alterations in diabetic rat collagen fibrils: role of protein glycation. Diabetes/Metab Res Rev 16:74–81

    Article  CAS  Google Scholar 

  19. Ayaz M, Can B, Özdemir S, Turan B (2002) Protective effect of selenium treatment on diabetes-induced myocardial structural alterations. Biol Trace Elem Res 89(3):215–226

    Article  PubMed  CAS  Google Scholar 

  20. Ayaz M, Özdemir S, Ugur M, Vassort G, Turan B (2004) Effects of selenium on altered mechanical and electrical cardiac activities of diabetic rat. Arch Biochem Biophys 426:83–90

    Article  PubMed  CAS  Google Scholar 

  21. Douillet C, Bost M, Accominotti M, Borson-Chazot F, Ciavatti M (1998) Effect of selenium and vitamin E supplements on tissue lipids, peroxides, and fatty acid distribution in experimental diabetes. Lipids 33(4):393–399

    Article  PubMed  CAS  Google Scholar 

  22. Schrauzer GN (2003) The nutritional significance, metabolism and toxicology of selenomethionine. Adv Food Nutr Res 47:73–112

    Article  PubMed  CAS  Google Scholar 

  23. Mueller A, Pallauf J, Rafael J (2003) The chemical form of selenium affects insulinomimetic properties of the trace element: investigations in type II diabetic dbdb mice. J Nutr Biochem 14:637–647

    Article  PubMed  CAS  Google Scholar 

  24. Jacobson BE, Lockitch G (1988) Direct determination of selenium in serum by graphite-furnace atomic absorption spectrometry with deuterium background correction and a reduced palladium modifier: age-specific reference ranges. Clin Chem 34(4):709–714

    PubMed  CAS  Google Scholar 

  25. Ferrer E, Alegria A, Barbera R, Farre R, Lagarda MJ (1998) Whole blood selenium determination: optimization of an ET-AAS method. Metal Ions in Biology and Medicine 5:23–27

    Google Scholar 

  26. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:58

    Google Scholar 

  27. Tas S, Zein El Din RR (1990) Automated fructosamine assay with improved accuracy used to quantify nonenzymatic glycation of serum proteins in diabetes mellitus and chronic renal failure. Clin Chem 36(10):1825–1830

    PubMed  CAS  Google Scholar 

  28. Mukherjee B, Anbazhagan S, Roy A, Ghosh R, Chatterjee M (1998) Novel implications of the potential role of selenium on antioxidant status in streptozotosin-induced diabetic mice. Biomed Pharmacother 52:89–95

    Article  PubMed  CAS  Google Scholar 

  29. Navarro-Alarcon M, Lopez-G de la Serrana H, Perez-Valero V, Lopez-Martinez C (1999) Serum and urine selenium concentrations as indicators of body status in patients with diabetes mellitus. Sci Total Environ 228:79–85

    Article  PubMed  CAS  Google Scholar 

  30. Thomson CD, Robinson MF, Butler JA, Whanger PD (1993) Long-term supplementation with selenate and selenomethionine: selenium and glutathione peroxidase (EC 1.11.1.9) in blood components of New Zealand Women. Br J Nutr 69(2):577–588

    Article  PubMed  CAS  Google Scholar 

  31. Ezaki O (1990) The insulin effects of selenate in rat adipocytes. J Biol Chem 265:1124–1128

    PubMed  CAS  Google Scholar 

  32. Furnsinn C, Englisch R, Ebner K, Nowotny P, Vogl C, Waldhaust W (1996) Insulinlike vs. non-insulin-like stimulation of glucose metabolism by vanadium, tungsten, and selenium compounds in rat muscle. Life Sci 59(23):1989–2000

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zubeyde Erbayraktar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erbayraktar, Z., Yılmaz, O., Artmann, A. et al. Effects of Selenium Supplementation on Antioxidant Defense and Glucose Homeostasis in Experimental Diabetes Mellitus. Biol Trace Elem Res 118, 217–226 (2007). https://doi.org/10.1007/s12011-007-0037-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-007-0037-5

Keywords

Navigation