Skip to main content
Log in

Combination of Selenium and Three Naturally Occurring Antioxidants Administration Protects d-Galactosamine-Induced Liver Injury in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

d-Galactosamine (d-GaIN) is a highly selective hepatotoxin that causes liver injury similar to human viral hepatitis via depletion of uridine nucleotides, which subsequently diminishes synthesis of RNA and proteins. The aim of this study was to investigate the role of selenium, ascorbic acid, beta-carotene, and alpha-tocopherol on d-GaIN-induced liver injury of rats by morphological and immunohistochemical means. In this study, Sprague–Dawley female rats were divided into four groups. Group I consists of rats injected physiologic saline solution intraperitoneally. Group II consists of rats given selenium (0.2 mg/kg per day), ascorbic acid (100 mg/kg per day), beta-carotene (15 mg/kg per day), and alpha-tocopherol (100 mg/kg per day) for 3 days via gavage method. Group III consists of the single dose of d-GaIN (500 mg/kg)-injected animals. Group IV are the d-GaIN-injected animals given the same antioxidant combination. In situ terminal deoxynucleotidyl transferase-mediated 2′-deoxyuridine 5′-triphosphate nick-end labeling (TUNEL) assay was applied to determine apoptosis for paraffin sections of the liver samples. Moreover, caspase-3 and proliferating cell nuclear antigen antibody were applied for paraffin sections. In the group given d-GaIN, apoptotic cells with TUNEL assays and caspase-3 activity, which are liver injury markers induced by d-GaIN, the hepatocyte proliferation with cell proliferation assay increased. However, selenium and other three antioxidants combination clearly suppressed an increase in apoptotic cells with TUNEL assay and caspase-3 activity. In addition, it suppressed d-GaIN-induced cell proliferation in the liver. As a result, these results indicate that selenium and three naturally occurring antioxidants shows a protective effect against liver injury induced by d-GaIN. These results suggest that supplementation with the combination of selenium, ascorbic acid, beta-carotene, and alpha-tocopherol may help prevent the development of liver injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

d-GaIN:

d-galactosamine

PBS:

phosphate buffer saline

PCNA:

proliferating cell nuclear antigen

ROS:

reactive oxygen species

TdT:

terminal deoxynucleotidyl transferase

TNF:

tumor necrosis factor

TUNEL:

in situ terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling

References

  1. Stachlewitz RF, Seabra V, Bradford B, Bradham CA, Rusyn I, Germolec D, Thurman RG (1999) Glycine and uridine prevent d-galactosamine hepatotoxicity in the rat: role of Kupffer cells. Hepatology 29:737–745

    Article  PubMed  CAS  Google Scholar 

  2. Gujral JS, Farhood A, Jaeschke H (2003) Oncotic necrosis and caspase-dependent apoptosis during galactosamine-induced liver injury in rats. Toxicol Appl Pharmacol 190:37–46

    Article  PubMed  CAS  Google Scholar 

  3. Aiub CAF, Bortolini R, Azambuja AA, Filho JCA, Nunes FB, de Olievira JR (2003) Alterations in the indexes of apoptosis and necrosis induced by galactosamine in the liver of Wistar rats treated with fructose-1,6-bisphosphate. Hepatol Res 25:83–91

    Article  CAS  Google Scholar 

  4. Ferencikova R, Cervinkova Z, Drahota Z (2003) Hepatotoxic effect of d-galactosamine and protective role of lipid emulsion. Physiol Res 52:73–78

    PubMed  CAS  Google Scholar 

  5. Bradham CA, Plumpe J, Manns MP, Brenner DA, Trautwein C (1998) Mechanisms of hepatic toxicity. I. TNF-induced liver injury. Am J Physiol 275:387–392

    Google Scholar 

  6. Sun F, Hamagawa E, Tsutsui C, Sagaguchi N, Kakuta Y, Tokumaru S, Kojo S (2003) Evaluation of oxidative stress during apoptosis and necrosis caused by d-galactosamine in rat liver. Biochem Pharmacol 65:101–107

    Article  PubMed  CAS  Google Scholar 

  7. Gate L, Paul J, Ba GN, Tew KD, Tapiero H (1999) Oxidative stress induced in pathologies: the role of antioxidants. Biomed Pharmacother 53:169–80

    Article  PubMed  CAS  Google Scholar 

  8. Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18:872–879

    Article  PubMed  CAS  Google Scholar 

  9. Evans P, Halliwell B (2001) Micronutrients: oxidant/antioxidant status. Br J Nutr 85(2):67–74

    Article  Google Scholar 

  10. Liebler DC (1993) The role of metabolism in the antioxidant function of vitamin E. Crit Rev Toxicol 23:147–169

    Article  PubMed  CAS  Google Scholar 

  11. Jaeschke H, Farhood A, Cai SX, Tseng BY, Bajt ML (2000) Protection against TNF-induced liver parenchymal cell apoptosis during endotoxemia by a novel caspase inhibitor in mice. Toxicol Appl Pharmacol 169:77–83

    Article  PubMed  CAS  Google Scholar 

  12. Andres D, Cascales M (2002) Novel mechanism of Vitamin E protection against cyclosporine A cytotoxicity in cultured rat hepatocytes. Biochem Pharmacol 64:267–76

    Article  PubMed  CAS  Google Scholar 

  13. Padh H (1990) Cellular functions of ascorbic acid. Biochem Cell Biol 68:1166–1173

    Article  PubMed  CAS  Google Scholar 

  14. Cheng WH, Quimby FW, Lei XG (2003) Impacts of glutathione peroxidase-1 knockout on the protection by injected selenium against the pro-oxidant-induced liver aponecrosis and signaling in selenium-deficient mice. Free Radic Biol Med 34:918–927

    Article  PubMed  CAS  Google Scholar 

  15. Naziroglu M (1999) Protective role of intraperitoneally administered vitamin E and selenium in rats anesthetized with enflurane. Biol Trace Elem Res 69:199–209

    Article  PubMed  CAS  Google Scholar 

  16. Sjunnesson H, Sturegard E, Willen R, Wadström T (2001) High intake of selenium, β-carotene, and vitamins A, C, and E reduces growth of Helicobacter pylori in the guinea pig. Comp Med 51:418–423

    PubMed  CAS  Google Scholar 

  17. Kaplowitz N (2000) Mechanisms of liver cell injury. J Hepatol 32:39–47

    Article  PubMed  CAS  Google Scholar 

  18. Kaplowitz N (2002) Biochemical and cellular mechanisms of toxic liver injury. Semin Liver Dis 22:137–144

    Article  PubMed  CAS  Google Scholar 

  19. Cheng CC, Etoh J, Tanimura T, Egashira Y, Ohta T, Sanada H (1996) Effects of dietary gluten on the hepatotoxic action of galactosamine and/or endotoxin in rats. Biosci Biotechnol Biochem 60:439–443

    Article  PubMed  CAS  Google Scholar 

  20. Tran-Thi TA, Phillips J, Falk H, Decker K (1985) Toxicity of d-galactosamine for rat hepatocytes in monolayer culture. Exp Mol Path 42:89–116

    Article  CAS  Google Scholar 

  21. Tsutsui S, Hirasawa K, Takeda M, Itagaki S, Kawamura S, Maeda K, Mikami T, Doi K (1997) Galactosamine-induced apoptosis in the primary mouse hepatocyte cultures. Exp Toxicol Pathol 49:301–306

    PubMed  CAS  Google Scholar 

  22. Siendones E, Fouad D, Abou-Elella AM, Quintero A, Barrera P, Muntane J (2003) Role of nitric oxide in d-galactosamine-induced cell death and its protection by PGE1 in cultured hepatocytes. Nitric Oxide 8:133–43

    Article  PubMed  CAS  Google Scholar 

  23. Osawa Y, Nagaki M, Banno Y, Yamada Y, Imose M, Nozawa Y, Moriwaki H, Nakashima S (2001) Possible involvement of reactive oxygen species in d-galactosamine-induced sensitization against tumor necrosis factor-α-induced hepatocyte apoptosis. J Cell Phys 187:374–385

    Article  CAS  Google Scholar 

  24. Kasravi FB, Wang L, Wang XD, Molin G, Bengmark S, Jeppsson B (1996) Bacterial translocation in acute liver injury induced by d-galactosamine. Hepatology 23:97–103

    PubMed  CAS  Google Scholar 

  25. Lopez-Torres M, Gredilla R, Sanz A, Barja G (2002) Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria. Free Radic Biol Med 32:882–889

    Article  PubMed  CAS  Google Scholar 

  26. Slater AF, Nobel CS, Orrenius S (1995) The role of intracellular oxidants in apoptosis. Biochim Biophys Acta 1271:59–62

    PubMed  Google Scholar 

  27. Deas O, Dumont C, Mollereau B, Metivier D, Pasquier C, Bernard-Poöier G, Hirsch F, Charpentier B, Senik A (1997) Thiol-mediated inhibition of FAS and CD2 apoptotic signaling in activated human peripheral T cells. Int Immunol 9:117–125

    Article  PubMed  CAS  Google Scholar 

  28. Tapalaga D, Tiegs G, Angermüller S (2002) NFκB and caspase-3 activity in apoptotic hepatocytes of galactosamine-sensitized mice treated with TNF-α. J Histochem Cytochem 50:1599–1609

    PubMed  CAS  Google Scholar 

  29. Sun F, Hayami S, Ogiri Y, Haruna S, Tanaka K, Yamada Y, Tokumaru S, Kojo S (2000) Evaluation of oxidative stress based on lipid hydroperoxide, vitamin C and vitamin E during apoptosis and necrosis caused by thioacetamide in rat liver. Biochim Biophys Acta 1500:181–185

    PubMed  CAS  Google Scholar 

  30. Higuchi M, Honda T, Proske RJ, Yeh ET (1998) Regulation of reactive oxygen species-induced apoptosis and necrosis by caspase 3-like proteases. Oncogene 17:2753–2760

    Article  PubMed  CAS  Google Scholar 

  31. Shen HM, Yang CF, Liu J, Ong CN (2000) Dual role of glutathione in selenite-induced oxidative stress and apoptosis in human hepatoma cells. Free Radic Biol Med 28:1115–1124

    Article  PubMed  CAS  Google Scholar 

  32. Simeonova PP, Gallucci RM, Hulderman T, Wilson R, Kommineni C, Rao M, Luster MI (2001) The role of tumor necrosis factor-alpha in liver toxicity, inflammation, and fibrosis induced by carbon tetrachloride. Toxicol Appl Pharmacol 177:112–120

    Article  PubMed  CAS  Google Scholar 

  33. Shimizu S, Eguchi Y, Kosaka H, Kamiike W, Matsuda H, Tsujimoto Y (1995) Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-xL. Nature 374:811–813

    Article  PubMed  CAS  Google Scholar 

  34. Hayama S, Ikeda K, Sun F, Tanaka K, Kojo S (1999) Increase of caspase-3 activity in rat liver and plasma by thioacetamide. Biochem Pharmacol 58:1941–1943

    Article  Google Scholar 

  35. Eckle VS, Buchmann A, Bursch W, Hermann-Schulte R, Schwarz M (2004) Immunohistochemical detection of activated caspases in apoptotic hepatocytes in rat liver. Toxic Path 32:9–15

    Article  CAS  Google Scholar 

  36. Sclafani L, Shimm P, Edelman J, Seifter E, Levenson SM, Demetriou AA (1986) Protective effect of vitamin E in rats with acute liver injury. JPEN J Parenter Enteral Nutr 10:184–187

    Article  PubMed  CAS  Google Scholar 

  37. Asaoka Y, Sakai H, Takahashi N, Hirata A, Tsukamoto T, Yamamoto M, Yanai T, Masegi T, Tatematsu T (2005) Intraperitoneal injection of d-galactosamine provides a potent cell proliferation stimulus for the detection of initiation activities of chemicals in rat liver. J Appl Toxicol 25:554–561

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the Research Fund of Istanbul University (project no. T-290/18062003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tunc Catal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catal, T., Bolkent, S. Combination of Selenium and Three Naturally Occurring Antioxidants Administration Protects d-Galactosamine-Induced Liver Injury in Rats. Biol Trace Elem Res 122, 127–136 (2008). https://doi.org/10.1007/s12011-007-8061-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-007-8061-z

Keywords

Navigation