Skip to main content

Advertisement

Log in

Decreased Zn2+ Influx Underlies the Protective Role of Hypoxia in Rat Nucleus Pulposus Cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zn2+ is an essential component of metalloproteinases, and is required for their activity in cartilage; however, the effect of Zn2+ on nucleus pulposus (NP) cells has not been widely investigated. The aim of this paper was to investigate the effect of intracellular Zn2+ concentration ([Zn2+]i) in hypoxia-induced regulation of metalloproteinases (MMPs) and extracellular matrix (ECM) production in NP cells. NP cells from Sprague-Dawley (SD) rats were cultured as monolayers or in alginate beads. [Zn2+]i was assayed by FluoZin-3 AM staining. Alcian Blue staining, immunochemistry, 1,9-dimethylmethylene blue (DMMB) assay, and real-time PCR were used to assay collagen II, proteoglycan, and COL2A1, MMP-13, and ADAMTS-5 mRNA expression. ZIP8, a main Zn2+ transporter in chondrocytes, was assayed by immunochemistry and in Western blotting. Interleukin (IL)-1β- and ZnCl2-induced increases of [Zn2+]i were significantly inhibited by hypoxia. Hypoxia did not reverse a decline of ECM expression caused by IL-1β and ZnCl2 in monolayer cultures, but did significantly attenuate the decreases of proteoglycan, glycosaminoglycan (GAG), and COL2A1 mRNA expression following IL-1β and ZnCl2 treatment in alginate bead cultures. However, ZnCl2 inhibited the protective effect of hypoxia. Both an intracellular Zn2+ chelator and hypoxia prevented the increase in MMP-13 mRNA expression. IL-1β and ZnCl2 treatment increased ZIP8 expression in NP cells, and hypoxia inhibited ZIP8 expression. In conclusion, decrease of Zn2+ influx mediates the protective role of hypoxia on ECM and MMP-13 expression. Consequently, changes in intracellular Zn2+ concentration maybe involved in intervertebral disc degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sakai D, Grad S (2014) Advancing the cellular and molecular therapy for intervertebral disc disease. Advanced Drug Deliv Rev

  2. Fontana G, See E,Pandit A (2014) Current trends in biologics delivery to restore intervertebral disc anabolism. Advanced Drug Deliv Rev

  3. Nakki A, Battie MC, Kaprio J (2014) Genetics of disc-related disorders: current findings and lessons from other complex diseases. Eur Spine J: Off Publ Eur Spine Soc Eur Spinal Deformity Soc Eur Section Cervical Spine Res Soc 23(Suppl 3):S354–363

    Article  Google Scholar 

  4. Manchikanti L, Singh V, Datta S, Cohen SP, Hirsch JA, American Society of Interventional Pain P (2009) Comprehensive review of epidemiology, scope, and impact of spinal pain. Pain Physician 12(4):E35–70

    PubMed  Google Scholar 

  5. Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976) 31(18):2151–2161

    Article  Google Scholar 

  6. Vo NV, Hartman RA, Yurube T, Jacobs LJ, Sowa GA, Kang JD (2013) Expression and regulation of metalloproteinases and their inhibitors in intervertebral disc aging and degeneration. Spine J: Off J North Am Spine Soc 13(3):331–341

    Article  Google Scholar 

  7. Pockert AJ, Richardson SM, Le Maitre CL, Lyon M, Deakin JA, Buttle DJ, Freemont AJ, Hoyland JA (2009) Modified expression of the adamts enzymes and tissue inhibitor of metalloproteinases 3 during human intervertebral disc degeneration. Arthritis Rheum 60(2):482–491

    Article  CAS  PubMed  Google Scholar 

  8. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8(3):221–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92(8):827–839

    Article  CAS  PubMed  Google Scholar 

  10. Song J, Kim D, Lee CH, Lee MS, Chun CH, Jin EJ (2013) Microrna-488 regulates zinc transporter slc39a8/zip8 during pathogenesis of osteoarthritis. J Biomed Sci 20:31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kim JH, Jeon J, Shin M, Won Y, Lee M, Kwak JS, Lee G, Rhee J, Ryu JH, Chun CH et al (2014) Regulation of the catabolic cascade in osteoarthritis by the zinc-zip8-mtf1 axis. Cell 156(4):730–743

    Article  CAS  PubMed  Google Scholar 

  12. Turgut M, Yenisey C, Akyuz O, Ozsunar Y, Erkus M, Bicakci T (2006) Correlation of serum trace elements and melatonin levels to radiological, biochemical, and histological assessment of degeneration in patients with intervertebral disc herniation. Biol Trace Elem Res 109(2):123–134

    Article  CAS  PubMed  Google Scholar 

  13. Yamasaki S, Sakata-Sogawa K, Hasegawa A, Suzuki T, Kabu K, Sato E, Kurosaki T, Yamashita S, Tokunaga M, Nishida K et al (2007) Zinc is a novel intracellular second messenger. J Cell Biol 177(4):637–645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Gerber PA, Bellomo EA, Hodson DJ, Meur G, Solomou A, Mitchell RK, Hollinshead M, Chimienti F, Bosco D, Hughes SJ et al (2014) Hypoxia lowers slc30a8/znt8 expression and free cytosolic zn2+ in pancreatic beta cells. Diabetologia 57(8):1635–1644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Chen JW, Li B, Yang YH, Jiang SD, Jiang LS (2014) Significance of hypoxia in the physiological function of intervertebral disc cells. Crit Rev Eukaryot Gene Expr 24(3):193–204

    Article  CAS  PubMed  Google Scholar 

  16. Feng G, Li L, Liu H, Song Y, Huang F, Tu C, Shen B, Gong Q, Li T, Liu L et al (2013) Hypoxia differentially regulates human nucleus pulposus and annulus fibrosus cell extracellular matrix production in 3d scaffolds. Osteoarthritis Cartilage / OARS, Osteoarthritis Res Soc 21(4):582–588

    Article  CAS  Google Scholar 

  17. Thoms BL, Dudek KA, Lafont JE, Murphy CL (2013) Hypoxia promotes the production and inhibits the destruction of human articular cartilage. Arthritis Rheum 65(5):1302–1312

    Article  CAS  PubMed  Google Scholar 

  18. Li H, Liang CZ, Chen QX (2013) Regulatory role of hypoxia inducible factor in the biological behavior of nucleus pulposus cells. Yonsei Med J 54(4):807–812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T (2011) Zinc homeostasis and signaling in health and diseases: zinc signaling. J Biol Inorg Chem: JBIC: Publ Soc Biol Inorg Chem 16(7):1123–1134

    Article  CAS  Google Scholar 

  20. Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281(34):24085–24089

    Article  CAS  PubMed  Google Scholar 

  21. Jiang L, Jin Y, Wang H, Jiang Y, Dong J (2014) Glucosamine protects nucleus pulposus cells and induces autophagy via the mTOR-dependent pathway. J Orthop Res: Off Publ Orthop Res Soc 32(11):1532–1542

    Article  CAS  Google Scholar 

  22. Goldberg RL, Kolibas LM (1990) An improved method for determining proteoglycans synthesized by chondrocytes in culture. Connect Tissue Res 24(3–4):265–275

    Article  CAS  PubMed  Google Scholar 

  23. Gogate SS, Nasser R, Shapiro IM, Risbud MV (2011) Hypoxic regulation of beta-1,3-glucuronyltransferase 1 expression in nucleus pulposus cells of the rat intervertebral disc: role of hypoxia-inducible factor proteins. Arthritis Rheum 63(7):1950–1960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Fukada T, Hojyo S, Furuichi T (2013) Zinc signal: a new player in osteobiology. J Bone Miner Metab 31(2):129–135

    Article  CAS  PubMed  Google Scholar 

  25. Sauer GR, Smith DM, Cahalane M, Wu LN, Wuthier RE (2003) Intracellular zinc fluxes associated with apoptosis in growth plate chondrocytes. J Cell Biochem 88(5):954–969

    Article  CAS  PubMed  Google Scholar 

  26. Sivan SS, Hayes AJ, Wachtel E, Caterson B, Merkher Y, Maroudas A, Brown S, Roberts S (2014) Biochemical composition and turnover of the extracellular matrix of the normal and degenerate intervertebral disc. Eur Spine J: Off Publ Eur Spine Soc, Eur Spinal Deformity Soc Eur Section Cervical Spine Res Soc 23(Suppl 3):S344–353

    Article  Google Scholar 

  27. Le Maitre CL, Freemont AJ, Hoyland JA (2005) The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther 7(4):R732–745

    Article  PubMed Central  PubMed  Google Scholar 

  28. Pae EK, Kim G (2014) Insulin production hampered by intermittent hypoxia via impaired zinc homeostasis. PLoS One 9(2):e90192

    Article  PubMed Central  PubMed  Google Scholar 

  29. Hojyo S, Fukada T, Shimoda S, Ohashi W, Bin BH, Koseki H, Hirano T (2011) The zinc transporter slc39a14/zip14 controls g-protein coupled receptor-mediated signaling required for systemic growth. PLoS One 6(3):e18059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Deniro M, Al-Mohanna FA (2012) Zinc transporter 8 (znt8) expression is reduced by ischemic insults: a potential therapeutic target to prevent ischemic retinopathy. PLoS One 7(11):e50360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Boyd LM, Chen J, Kraus VB, Setton LA (2004) Conditioned medium differentially regulates matrix protein gene expression in cells of the intervertebral disc. Spine 29(20):2217–2222

    Article  PubMed  Google Scholar 

  32. Rastogi A, Thakore P, Leung A, Benavides M, Machado M, Morschauser MA, Hsieh AH (2009) Environmental regulation of notochordal gene expression in nucleus pulposus cells. J Cell Physiol 220(3):698–705

    Article  CAS  PubMed  Google Scholar 

  33. Yang SH, Hu MH, Sun YH, Lin FH (2013) Differential phenotypic behaviors of human degenerative nucleus pulposus cells under normoxic and hypoxic conditions: influence of oxygen concentration during isolation, expansion, and cultivation. Spine J: Off J North Am Spine Soc 13(11):1590–1596

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the Natural Science Foundation of China (81372002), (31170925), (81301335) and the “Technology Innovation Action Plan” Key Project of Shanghai Science and Technology Commission (12411951300), (12JC1402600).

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Xi-Lei or Dong Jian.

Additional information

Yin Xiao-Fan and Jiang Li-Bo contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao-Fan, Y., Li-Bo, J., Yi-Qun, M. et al. Decreased Zn2+ Influx Underlies the Protective Role of Hypoxia in Rat Nucleus Pulposus Cells. Biol Trace Elem Res 168, 196–205 (2015). https://doi.org/10.1007/s12011-015-0335-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0335-2

Keywords

Navigation