Skip to main content
Log in

The Allium triquetrum L. Leaves Mitigated Hepatotoxicity and Nephrotoxicity Induced by Lead Acetate in Wistar Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

A Correction to this article was published on 11 January 2022

This article has been updated

Abstract

The aim of this study was to scrutinize the possible mitigating role of leaves’ Allium triquetrum L. against the toxicity of lead acetate on liver and kidney markers of Wistar rat. Lead acetate (Pb) and leaves’ aqueous extracts (L) were orally administrated for 3 weeks. Rats were divided into the control, Pb group (500 mg/kg body weight/day), positive controls L (2g, 3g, 4g/kg BW/day), along with three combined groups of the same doses (Pb-L1, Pb-L2, Pb-L3). The levels of plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total proteins (TP), albumin (ALB), urea, creatinine (Cr), and uric acid (UA), as well as the hepatic and the renal malondialdehyde (MDA), glutathione (GSH), and glutathione peroxidase (GPx), were estimated. Results exhibited a significant increase in plasma AST, ALT, ALP, urea, creatinine, uric acid, and MDA levels of the Pb group compared to the control, with the exception of TP, ALB, GSH levels, and GPx activities that were significantly diminished, though the co-administration of garlic extracts (Pb-L) revealed a significant decrease in all mentioned markers, excluding the TP, ALB, GSH, and GPx levels. Likewise, Pb caused histological injuries in the hepatic and renal tissues of rats, while the co-administration of leaves’ wild garlic has reduced such effect. Thought, the Pb-L has attenuated the Pb-induced toxicity in a dose-dependent manner. In conclusion, the aqueous extracts of A. triquetrum have the potential to alleviate Pb hepatotoxicity and nephrotoxicity through the modulation of most biomarkers in Wistar rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Kabeer A, Mailafiya MM, Danmaigoro A, Rahim EA, Bakar ZA (2019) Therapeutic potential of curcumin against lead-induced toxicity: a review. Biomed Res Ther 6:3053–3066. https://doi.org/10.15419/bmrat.v6i3.528

    Article  Google Scholar 

  2. Gargouri M, Soussi A, Akrouti A, Magne C, El-Feki A (2019) Potential protective effects of the edible alga Arthrospira platensis against lead-induced oxidative stress, anemia, kidney injury, and histopathological changes in adult rats. Appl Physiol Nutr Metab 44:271–281. https://doi.org/10.1139/apnm-2018-0428

    Article  CAS  PubMed  Google Scholar 

  3. Mansouri O, Hamamdia Z, Abdennour C (2021) Protective effects of wheat grass on histopathology of some organs and biomarkers parameters against lead acetate toxicity in Wistar rats. J Stress Physiol Biochem 17(3):78–94

    Google Scholar 

  4. Kahalerras L, Otmani I, Abdennour C (2021) Wild garlic Allium triquetrum L. alleviates lead acetate-induced testicular injuries in rats. Biol Trace Elm Res 1-18. https://doi.org/10.1007/s12011-021-02818-8

  5. El-Boshy ME, Refaat B, Qasem AH, Khan A, Ghaith M, Almasmoum H, Mahbub A, Almaimani RA (2019) The remedial effect of Thymus vulgaris extract against lead toxicity-induced oxidative stress, hepatorenal damage, immunosuppression, and hematological disorders in rats. Environ Sci Pollut Res 26(22):22736–22746. https://doi.org/10.1007/s11356-019-05562-8

    Article  CAS  Google Scholar 

  6. Ezejiofor AN, Orisakwe OE (2019) Nephroprotective effect of Costusafer on lead induced kidney damage in albino rats. Int J Physiol Pathophysiol Pharmacol 11(2):36

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Almatroodi SA, Anwar S, Almatroudi A, Khan AA, Alrumaihi F, AlsahliMA Rahmani, AH, (2020) Hepatoprotective effects of garlic extract against carbon tetrachloride (CCl4)-induced liver injury via modulation of antioxidant, anti-inflammatory activities and hepatocyte architecture. App Sci 10(18):6200. https://doi.org/10.3390/app10186200

    Article  CAS  Google Scholar 

  8. El-Khishin IA, El-Fakharany YMM, Hamid OIA (2015) Role of garlic extract and silymarin compared to dimercaptosuccinic acid (DMSA) in treatment of lead induced nephropathy in adult male albino rats. Toxicol Rep 2:824–832. https://doi.org/10.1016/j.toxrep.2015.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lentini P, Zanoli L, Granata A, Signorelli SS, Castellino P, Dell’Aquila R (2017) Kidney and heavy metals-the role of environmental exposure. Mol Med Rep 15(5):3413–3419. https://doi.org/10.3892/mmr.2017.6389

    Article  CAS  PubMed  Google Scholar 

  10. Al-Megrin WA, Soliman D, Kassab RB, Metwally DM, Abdel Moneim AE, El-Khadragy MF (2020) Coenzyme Q10 activates the antioxidant machinery and inhibits the inflammatory and apoptotic cascades against lead acetate-induced renal injury in rats. Front Physiol 11:64. https://doi.org/10.3389/fphys.2020.00064

    Article  PubMed  PubMed Central  Google Scholar 

  11. Radad K, Hassanein K, Al-Shraim M, Moldzio R, Rausch WD (2014) Thymoquinone ameliorates lead-induced brain damage in Sprague Dawley rats. Exp Toxicol Pathol 66:13. https://doi.org/10.1016/j.etp.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  12. Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol 5(2):47–58. https://doi.org/10.2478/v10102-012-0009-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun D, Sun C, Qiu G, Yao L, Yu J, Al Sberi H, Fouda MS, Othman MS, Lokman MS, Kassab RB, Abdel Moneim EA (2021) Allicin mitigates hepatic injury following cyclophosphamide administration via activation of Nrf2/ARE pathways and through inhibition of inflammatory and apoptotic machinery. Environ SciPollut Res 1–12https://doi.org/10.1007/s11356-021-13392-w

  14. Patra R, Swarup D, Dwivedi S (2001) Antioxidant effects of α- tocopherol, ascorbic acid and L-methionine on lead induced oxidative stress to the liver, kidney and brain in rats. Toxicol 162:81–88. https://doi.org/10.1016/S0300-483X(01)00345-6

    Article  CAS  Google Scholar 

  15. Ghildiyal R, Prakash V, Chaudhary VK, Gupta V, Gabrani R (2020) Phytochemicals as antiviral agents: recent updates. In Plant-derived bioactives: Production, Properties and Therapeutic Applications. Swamy MK (Ed). Springer, Singapore 12:279–295. https://doi.org/10.1007/978-981-15-1761-7_12

  16. Al-Snafi AE (2015) The therapeutic importance of Cassia occidentalis - an overview. Indian J Pharma Sci Res 5(3):158–171

    Google Scholar 

  17. Otmani I, Abdennour C, Dridi A, Kahalerras L, Halima-Salem A (2019) Characteristics of the bitter and sweet honey from Algeria Mediterranean coast. Vet World 12(4):551–557. https://doi.org/10.14202/vetworld.2019.551-557

    Article  PubMed  PubMed Central  Google Scholar 

  18. Anwar S, Younus H (2017) Inhibitory effect of alliin from Allium sativum on the glycation of super oxide dismutase. Int J Biol Macromol 103:182–193. https://doi.org/10.1016/j.ijbiomac.2017.05.043

    Article  CAS  PubMed  Google Scholar 

  19. El-Sebaey AM, Abdelhamid FM, Abdalla OA (2019) Protective effects of garlic extract against hematological alterations, immunosuppression, hepatic oxidative stress, and renal damage induced by cyclophosphamide in rats. Envir Sci Pollut Res 26(15):15559–15572. https://doi.org/10.1007/s11356-019-04993-7

    Article  Google Scholar 

  20. Fihri AF, Al-Waili NS, El-Haskoury R, Bakour M, Amarti A, Ansari MJ, Lyoussi B (2016) Protective effect of Morocco carob honey against lead-induced anemia and hepato-renal toxicity. Cell Physiol Biochem 39:115–122. https://doi.org/10.1159/000445610

    Article  CAS  PubMed  Google Scholar 

  21. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  22. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. https://doi.org/10.1016/00032697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  23. Weckbecker G, Cory JG (1988) Ribonucleotide reductase activity and growth of glutathione-depleted mouse leukemia L1210 cells in vitro. Cancer Lett 40:257–264. https://doi.org/10.1016/0304-3835(88)90084-5

    Article  CAS  PubMed  Google Scholar 

  24. Flohé L, Günzler WA (1984) [12] Assays of glutathione peroxidase. Methods Enzymol 105:114–120. https://doi.org/10.1016/S0076-6879(84)05015-1 (Academic Press)

    Article  PubMed  Google Scholar 

  25. Hould R (1984) Methode de Fontana : Techniques d’histopathologie et de cytopathologie. Ed Maloine. Canada, France 19-21: 225-227

  26. Corea G, Fattorusso E, Lanzotti V (2003) Saponins and flavonoids of Allium triquetrum. J Nat Prod 66:1405–1411. https://doi.org/10.1021/np030226q

    Article  CAS  PubMed  Google Scholar 

  27. Menacer A, Boukhatem MN, Benhelal A, Saïdi F (2017) In vitro antioxidant activity of different extracts of Algerian Allium plant (Allium triquetrum L.). Rev des Bio-Ressources 7:80–91. https://doi.org/10.12816/0045885

    Article  Google Scholar 

  28. Menacer A, Saidi F, Benhelal A (2017) In vitro evaluation de l’activité antimicrobienne des différents extraits d’Allium triquetrum L., espèce algérienne spontané. [In vitro evaluation of the antimicrobial activity of different extracts of Allium triquetrum L., a spontaneous Algerian species]. Rev El-Wahat pour les Rech 10:152–161

    Google Scholar 

  29. Rabah S, Kouachi K, Ramos PA, Gomes AP, Almeida A, Haddadi-Guemghar H, Khodir M, Silvestre AJD, Santos SAO (2020) Unveiling the bioactivity of Allium triquetrum L. lipophilic fractions: chemical characterization and in vitro antibacterial activity against methicillin-resistant Staphylococcus aureus. Food Funct 11(6):5257–5265. https://doi.org/10.1039/D0FO00769B

    Article  CAS  PubMed  Google Scholar 

  30. Al-Brakati AY, Fouda MS, Tharwat AM, Elmahallawy EK, Kassab RB, Abdel Moneim AE (2019) The protective efficacy of soursop fruit extract against hepatic injury associated with acetaminophen exposure is mediated through antioxidant, anti-inflammatory, and antiapoptotic activities. Environ Sci Pollut Res Int 26(13):13539–13550. https://doi.org/10.1007/s11356-019-04935-3

    Article  CAS  PubMed  Google Scholar 

  31. Singh C, Prakash C, Tiwari KN, Mishra SK, Kumar V (2018) Premna integrifolia ameliorates cyclophosphamide-induced hepatotoxicity by modulation of oxidative stress and apoptosis. Biomedi Pharmacother Biomed Pharmacother 107:634–643. https://doi.org/10.1016/j.biopha.2018.08.039

    Article  CAS  Google Scholar 

  32. Nallagangula KS, Nagaraj SK, Venkataswamy L, Chandrappa M (2017) Liver fibrosis: a compilation on the biomarker’s status and their significance during disease progression. Future Sci OA 4(1): FSO250 https://doi.org/10.4155/fsoa-2017-0083

  33. Shin JH, Lee CW, Oh SJ, Yun J, Kang MR, Han SB, Park H, Jung JC, Chung YH, Kang JS (2014) Hepatoprotective effect of aged black garlic extract in rodents. Toxicol Res 30:49–54. https://doi.org/10.5487/TR.2014.30.1.049

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pathak S, Catanzaro R, Vasan D, Marotta F, Chabria Y, Jothimani G, Verma RS, Ramachandran M, Khuda-Bukhsh AR, Banerjee A (2018) Benefits of aged garlic extract in modulating toxicity biomarkers against p-dimethyl amino azobenzene and phenobarbital induced liver damage in Rattus norvegicus. Drug Chem Toxicol 43(5):454–467. https://doi.org/10.1080/01480545.2018.1499773

    Article  CAS  PubMed  Google Scholar 

  35. Naji KM, Al-Shaibani ES, Alhadi FA, Al-Soudi SA, D’Souza MR (2017) Hepatoprotective and antioxidant effects of single clove garlic against CCl4-induced hepatic damage in rabbits. BMC Complement Altern Med 17:1–12. https://doi.org/10.1186/s12906-017-1916-8

    Article  CAS  Google Scholar 

  36. Aly SM, Fetaih HA, Hassanin AA, Abomughaid MM, Ismail AA (2019) Protective effects of garlic and cinnamon oils on hepatocellular carcinoma in albino rats. Anal Cell Pathol 22:9895485. https://doi.org/10.1155/2019/9895485

    Article  CAS  Google Scholar 

  37. Navas-Acien A, Tellez-Plaza M, Guallar E, Muntner P, Silbergeld E, Jaar B, Weaver V (2009) Blood cadmium and lead and chronic kidney disease in US adults: a joint analysis. Am J Epidemiol 170(9):1156–64. https://doi.org/10.1093/aje/kwp248

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fadrowski JJ, Navas-Acien A, Tellez-Plaza M, Guallar E, Weaver VM, Furth SL (2010) Blood lead level and kidney function in US adolescents: The Third National Health and Nutrition Examination Survey. Arch Intern Med 170(1):75–82. https://doi.org/10.1001/archinternmed.2009.417

    Article  CAS  PubMed  Google Scholar 

  39. Lakshmi BV, Sudhakar M, Aparna M (2013) Protective potential of black grapes against lead induced oxidative stress in rats. Environ Toxicol Pharmacol 35:361–368. https://doi.org/10.1016/j.etap.2013.01.008

    Article  CAS  PubMed  Google Scholar 

  40. Shalan MG, Mostafa MS, Hassouna MM, El-Nabi SEH, El-Refaie A (2005) Amelioration of lead toxicity on rat liver with vitamin C and silymarin supplements. Toxicol 206:1–15. https://doi.org/10.1016/j.tox.2004.07.006

    Article  CAS  Google Scholar 

  41. Dobrakowski M, Pawlas N, Kasperczyk A, Kozłowska A, Olewińska E, Machoń-Grecka A, Kasperczyk S (2016) Oxidative DNA damage and oxidative stress in lead-exposed workers. Hum Exp Toxicol 36:744–754. https://doi.org/10.1177/0960327116665674

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Z, Gao X, GuoM Jiang H, Cao Y, Zhang N (2017) The protective effect of baicalin against lead-induced renal oxidative damage in mice. Biol Trace Elem Res 175:129–135. https://doi.org/10.1007/s12011-016-0731-2

    Article  CAS  PubMed  Google Scholar 

  43. Renugadevi J, Prabu SM (2010) Cadmium-induced hepatotoxicity in rats and the protective effect of naringenin. Exp Toxicol Pathol 62:171–181. https://doi.org/10.1016/j.etp.2009.03.010

    Article  CAS  PubMed  Google Scholar 

  44. Hsu PC, Guo YL (2002) Antioxidant nutrients and lead toxicity. Toxicology 180:33–44. https://doi.org/10.1016/s0300-483x(02)00380-3

    Article  CAS  PubMed  Google Scholar 

  45. Liu CM, Liu CM, Zheng YL, Lu J, Zhang ZF, Fan SH, Wu DM, Ma JQ (2010) Quercetin protects rat liver against lead-induced oxidative stress and apoptosis. Environ Toxicol Pharmacol 29(2):158–166. https://doi.org/10.1016/j.etap.2009.12.006

    Article  CAS  PubMed  Google Scholar 

  46. Sivaprasad R, Nagaraj M, Varalakshmi P (2004) Combined efficacies of lipoic acid and 2, 3-dimercaptosuccinic acid against lead-induced lipid peroxidation in rat liver. J Nutr Biochem 15:18–23. https://doi.org/10.1016/j.jnutbio.2003.09.001

    Article  CAS  PubMed  Google Scholar 

  47. Asdaq SM, Inamdar MN (2010) Potential of garlic and its active constituent, S-allyl cysteine, as antihypertensive and cardioprotective in presence of captopril. Phytomed 17:1016–26. https://doi.org/10.1016/j.phymed.2010.07.012

    Article  CAS  Google Scholar 

  48. Upadhyay RK (2017) Nutritional and therapeutic potential of Allium vegetables. J Nutr Ther 6(1):18–37. https://doi.org/10.6000/1929-5634.2017.06.01.3

    Article  CAS  Google Scholar 

  49. Abubakar K, Mailafiya MM, Chiroma SM, Danmaigoro A, Zyoud TY, Abdul Rahim E, Abu Bakar Zakaria MZ (2020) Ameliorative effect of curcumin on lead-induced hematological and hepatorenal toxicity in a rat model. J Biochem Mol Toxicol 34(6):e22483. https://doi.org/10.1002/jbt.22483

    Article  CAS  PubMed  Google Scholar 

  50. Andjelkovic M, BuhaDjordjevic A, Antonijevic E, Antonijevic B, Stanic M, Kotur-Stevuljevic J, Spasojevic-Kalimanovska V, Jovanovic M, Boricic N, Wallace D, Bulat Z (2019) Toxic effect of acute cadmium and lead exposure in rat blood, liver, and kidney. Int J Environ Res Public Health 16(2):274. https://doi.org/10.3390/ijerph16020274

    Article  CAS  PubMed Central  Google Scholar 

  51. Munday R, Munday CM (2004) Induction of phase II enzymes by aliphatic sulfides derived from garlic and onions: an overview. Methods Enzymol 382:449–456. https://doi.org/10.1016/S0076-6879(04)82024-X

    Article  CAS  PubMed  Google Scholar 

  52. Hussein JS, Oraby FS, El-Shafey N (2007) Antihepatotoxic effect of garlic and onion oils on ethanol-induced liver injury in rats. J Appl Sci Res 3(11):1527–1533

    CAS  Google Scholar 

  53. ManojKumar V, Henley AK, Nelson CJ, Indumati O, Prabhakara Rao Y, Rajanna S, Rajanna B (2016) Protective effect of Allium sativum (garlic) aqueous extract against lead-induced oxidative stress in the rat brain, liver, and kidney. Environ Sci Pollut Res 24:1544–1552. https://doi.org/10.1007/s11356-016-7923-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the General Directorate of Scientific Research and Technological Development (DGRSDT) for supporting this project (award number 04/2016).

Funding

The authors received financial support for bench fees, but not for authorship, and/or for publication of this article.

The datasets generated during the current study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Contributions

L Kahalerras drafted the manuscript and contributed to the analysis and interpretation of results; I Otmani participated in the experimental work; C Abdennour corrected and revised the manuscript. All authors read and gave the final approval of the manuscript.

Corresponding author

Correspondence to Labiba Kahalerras.

Ethics declarations

Ethics Approval

The experiment was carried out in accordance with the rules of the national guidelines of animals’ rights, and the international animal experimentation chart and animal handling of Helsinki Declaration of 2008.

Consent for Publication

Not applicable for this section.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahalerras, L., Otmani, I. & Abdennour, C. The Allium triquetrum L. Leaves Mitigated Hepatotoxicity and Nephrotoxicity Induced by Lead Acetate in Wistar Rats. Biol Trace Elem Res 200, 4733–4743 (2022). https://doi.org/10.1007/s12011-021-03052-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-03052-y

Keywords

Navigation