Skip to main content
Log in

Impact of Camellia sinensis Iron Oxide Nanoparticle on Growth, Hemato-biochemical and Antioxidant Capacity of Blue Gourami (Trichogaster trichopterus) Fingerlings

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effect of green tea (Camellia sinensis) iron oxide nanoparticles (nano-Fe) on the effectiveness, growth, antioxidant capacity, and immunological response of Trichogaster trichopterus (Blue gourami) fingerlings was investigated. UV–Visible, Fourier Transform Infrared, Scanning Electron Microscopy, Energy Dispersive X-ray, X-ray diffraction, Dynamic Light Scattering, and Zeta Potential spectroscopy were used to evaluate the biologically synthesized nano-Fe. Characterization revealed the hexagonal and spherical morphology with an average diameter of 114 nm. Six different experimental diets were supplied to the fish in duplicate for 60 days. The first diet served as a control (no nano-Fe supplementation), whereas the remaining five diets contained nano-Fe at concentrations of 10, 20, 30, 40, and 50 mg/kg (D1 to D5). The results indicated that fish fed a nano-Fe diet at a concentration of 40 mg/kg had improved growth performance, biochemical constituents, hematological parameters, and antioxidant activity in T. trichopterus, implying that it might be used as a vital feed supplement in ornamental fish culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AgNPs:

Silver Nanoparticles

CuNPs:

Copper nanoparticles

D1–D5:

Diet 1 to Diet 5

EDTA:

Ethylene diamine tetra acetic acid

EDX:

Energy dispersive X-Ray analysis

FCE:

Feed conversion efficiency

FCR:

Feed conversion ratio

Fe:

Iron

FeNPs:

Iron nanoparticles

FeONPs:

Iron oxide nanoparticles

FRP tanks:

Fiberglass tanks

FW:

Fish weight

g/kg:

Gram/kilogram

Hb:

Hemoglobin

Hc:

Hematocrit

JCPDS:

Joint Committee on Powder Diffraction Standards

L:

Liter

MCH:

Mean corpuscular hemoglobin

MCHC:

Mean corpuscular hemoglobin concentration

MCV:

Mean cell volume

mg/kg:

Milligram/kilogram

mg/l:

Milligram/liter

MnNPs:

Manganese nanoparticles

RBC:

Red blood corpuscles

SEM:

Scanning electron microscope

SeNPs:

Selenium nanoparticles

SGR:

Specific growth rate

U/mg protein:

Units/milligram protein

WBC:

White blood corpuscles

WG:

Weight gain

ZnNPs:

Zinc nanoparticles

ZnONPs:

Zinc oxide nanoparticles

References

  1. Chinnadurai K, Prema P, Veeramanikandan V, Kumar KR, Nguyen V-H, Marraiki N, Zaghloul NS, Balaji P (2022) Toxicity evaluation and oxidative stress response of fumaronitrile, a persistent organic pollutant (POP) of industrial waste water on tilapia fish (Oreochromis mossambicus). Environ Res 204:112030

    Article  CAS  Google Scholar 

  2. Mahadevan G, Pouladi M, Stara A, Faggio C (2021) Nutritional evaluation of elongate mudskipper Pseudapocryptes elongatus (Cuvier, 1816) from Diamond Harbor, West Bengal, India. Nat Prod Res 35(16):2715–2721

    Article  CAS  Google Scholar 

  3. Waite R, Beveridge M, Brummett R, Castine S, Chaiyawannakarn N, Kaushik S, Mungkung R, Nawapakpilai S, Phillips M (2014) Improving productivity and environmental performance of aquaculture. WorldFish,

  4. Shah BR, Mraz J (2020) Advances in nanotechnology for sustainable aquaculture and fisheries. Rev Aquac 12(2):925–942

    Article  Google Scholar 

  5. Mohammady EY, Soaudy MR, Abdel-Rahman A, Abdel-Tawwab M, Hassaan MS (2021) Comparative effects of dietary zinc forms on performance, immunity, and oxidative stress-related gene expression in Nile tilapia, Oreochromis niloticus. Aquaculture 532:736006

    Article  CAS  Google Scholar 

  6. Rashidian G, Lazado CC, Mahboub HH, Mohammadi-Aloucheh R, Prokić MD, Nada HS, Faggio C (2021) Chemically and green synthesized ZnO nanoparticles alter key immunological molecules in common carp (Cyprinus carpio) skin mucus. Int J Mol Sci 22(6):3270

    Article  CAS  Google Scholar 

  7. Taherian SMR, Hosseini SA, Jafari A, Etminan A, Birjandi M (2019) Acute toxicity of zinc oxide nanoparticles from Satureja hortensis on rainbow trout (Oncorhynchus mykiss). Turkish J Fish Aquat Sci 20(6):481–489

    Google Scholar 

  8. Yusof HM, Mohamad R, Zaidan UH (2019) Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J Anim Sci Biotechnol 10(1):1–22

    Google Scholar 

  9. Mahboub HH, Shahin K, Zaglool AW, Roushdy EM, Ahmed SA (2020) Efficacy of nano zinc oxide dietary supplements on growth performance, immunomodulation and disease resistance of African catfish Clarias gariepinus. Dis Aquat Org 142:147–160

    Article  Google Scholar 

  10. Hedayati SA, Sheikh Veisi R, Hosseini Shekarabi SP, Shahbazi Naserabad S, Bagheri D, Ghafarifarsani H (2021) Effect of dietary Lactobacillus casei on physiometabolic responses and liver histopathology in common carp (Cyprinus carpio) after exposure to iron oxide nanoparticles. Biol Trace Elem Res:1–9

  11. Behera T, Swain P, Rangacharulu P, Samanta M (2014) Nano-Fe as feed additive improves the hematological and immunological parameters of fish Labeo rohita H. Appl Nanosci 4(6):687–694

    Article  CAS  Google Scholar 

  12. Rodrigues SM, Demokritou P, Dokoozlian N, Hendren CO, Karn B, Mauter MS, Sadik OA, Safarpour M, Unrine JM, Viers J (2017) Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environ Sci Nano 4(4):767–781

    Article  CAS  Google Scholar 

  13. Muralisankar T, Bhavan PS, Radhakrishnan S, Seenivasan C, Manickam N, Srinivasan V (2014) Dietary supplementation of zinc nanoparticles and its influence on biology, physiology and immune responses of the freshwater prawn Macrobrachium rosenbergii. Biol Trace Elem Res 160(1):56–66

    Article  CAS  Google Scholar 

  14. Ismail SH, Hamdy A, Ismail TA, Mahboub HH, Mahmoud WH, Daoush WM (2021) Synthesis and characterization of antibacterial carbopol/ZnO hybrid nanoparticles gel. Crystals 11(9):1092

    Article  CAS  Google Scholar 

  15. Mahboub HH, Beheiry RR, Shahin SE, Behairy A, Khedr MH, Ibrahim SM, Elshopakey GE, Daoush WM, Altohamy DE, Ismail TA (2021) Adsorptivity of mercury on magnetite nano-particles and their influences on growth, economical, hemato-biochemical, histological parameters and bioaccumulation in Nile tilapia (Oreochromis niloticus). Aquat Toxicol 235:105828

    Article  CAS  Google Scholar 

  16. Muralisankar T, Bhavan PS, Radhakrishnan S, Seenivasan C, Srinivasan V (2016) The effect of copper nanoparticles supplementation on freshwater prawn Macrobrachium rosenbergii post larvae. J Trace Elem Med Biol 34:39–49

    Article  CAS  Google Scholar 

  17. Khabbazi M, Harsij M, Hedayati SAA, Gholipoor H, Gerami MH, Ghafari Farsani H (2015) Effect of CuO nanoparticles on some hematological indices of rainbow trout Oncorhynchus mykiss and their potential toxicity. Nanomed J 2(1):67–73

    Google Scholar 

  18. Ashouri S, Keyvanshokooh S, Salati AP, Johari SA, Pasha-Zanoosi H (2015) Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio). Aquaculture 446:25–29

    Article  CAS  Google Scholar 

  19. Izquierdo MS, Ghrab W, Roo J, Hamre K, Hernández-Cruz CM, Bernardini G, Terova G, Saleh R (2017) Organic, inorganic and nanoparticles of Se, Zn and Mn in early weaning diets for gilthead seabream (Sparus aurata; Linnaeus, 1758). Aquacult Res 48(6):2852–2867

    Article  CAS  Google Scholar 

  20. Jha AK, Prasad K (2014) Synthesis of silver nanoparticles employing fish processing discard: an eco-amenable approach. J Chinese Adv Mater Soc 2(3):179–185

    Article  CAS  Google Scholar 

  21. Luis AIS, Campos EVR, de Oliveira JL, Fraceto LF (2019) Trends in aquaculture sciences: from now to use of nanotechnology for disease control. Rev Aquac 11(1):119–132

    Article  Google Scholar 

  22. Muruganandam M, Chipps SR, Ojasvi PR (2019) On the advanced technologies to enhance fisheries production and management. Acta Sci Agric 3(8):216–222. https://doi.org/10.31080/ASAG.2019.03.0589

    Article  Google Scholar 

  23. Ghafarifarsani H, Hoseinifar SH, Adorian TJ, Ferrigolo FRG, Raissy M, Van Doan H (2021) The effects of combined inclusion of Malvae sylvestris, Origanum vulgare, and Allium hirtifolium boiss for common carp (Cyprinus carpio) diet: growth performance, antioxidant defense, and immunological parameters. Fish Shellfish Immunol 119:670–677

    Article  CAS  Google Scholar 

  24. Raissy M, Ghafarifarsani H, Hoseinifar SH, El-Haroun ER, Naserabad SS, Van Doan H (2022) The effect of dietary combined herbs extracts (oak acorn, coriander, and common mallow) on growth, digestive enzymes, antioxidant and immune response, and resistance against Aeromonas hydrophila infection in common carp, Cyprinus carpio. Aquaculture 546:737287

    Article  CAS  Google Scholar 

  25. Musharraf M, Khan MA (2019) Requirement of fingerling Indian major carp, Labeo rohita (Hamilton) for dietary iron based on growth, whole body composition, haematological parameters, tissue iron concentration and serum antioxidant status. Aquaculture 504:148–157

    Article  CAS  Google Scholar 

  26. Uzo-God OC, Agarwal A, Singh N (2019) Effects of dietary nano and macro iron oxide (Fe2O3) on the growth, biochemical, and hematological profiles of African catfish (Clarias gariepinus) fingerlings. J Appl Aquacult 31(2):153–171

    Article  Google Scholar 

  27. Qiao YG, Tan BP, Mai KS, Ai QH, Zhang WB, Xu W (2013) Evaluation of iron methionine and iron sulphate as dietary iron sources for juvenile cobia (Rachycentron canadum). Aquacult Nutr 19(5):721–730

    Article  CAS  Google Scholar 

  28. Ling J, Feng L, Liu Y, Jiang J, Jiang WD, Hu K, Li SH, Zhou XQ (2010) Effect of dietary iron levels on growth, body composition and intestinal enzyme activities of juvenile Jian carp (Cyprinus carpio var. Jian). Aquacult Nutr 16(6):616–624

    Article  CAS  Google Scholar 

  29. Shiau S-Y, Su L-W (2003) Ferric citrate is half as effective as ferrous sulfate in meeting the iron requirement of juvenile tilapia, Oreochromis niloticus× O. aureus. J Nutr 133(2):483–488

    Article  CAS  Google Scholar 

  30. Bunglavan SJ, Garg A, Dass R, Shrivastava S (2014) Use of nanoparticles as feed additives to improve digestion and absorption in livestock. Livest Res Int 2(3):36–47

    Google Scholar 

  31. Hedayati SA, Farsani HG, Naserabad SS, Hoseinifar SH, Van Doan H (2019) Protective effect of dietary vitamin E on immunological and biochemical induction through silver nanoparticles (AgNPs) inclusion in diet and silver salt (AgNO3) exposure on Zebrafish (Danio rerio). Comp Biochem Physiol C: Toxicol Pharmacol 222:100–107

    CAS  Google Scholar 

  32. Mirghaed AT, Yarahmadi P, Craig PM, Farsani HG, Ghysvandi N, Eagderi S (2018) Hemato-immunological, serum metabolite and enzymatic stress response alterations in exposed rainbow trout (Oncorhynchus mykiss) to nanosilver. Int J Aquat Biol 6(4):221–234

    Google Scholar 

  33. Vijayakumar M, Balakrishnan V (2014) Evaluating the bioavailability of calcium phosphate nanoparticles as mineral supplement in broiler chicken. Indian J Sci Technol 7(10):1475–1480

    Article  CAS  Google Scholar 

  34. Khosravi-Katuli K, Prato E, Lofrano G, Guida M, Vale G, Libralato G (2017) Effects of nanoparticles in species of aquaculture interest. Environ Sci Pollut Res 24(21):17326–17346

    Article  Google Scholar 

  35. Mohsenpour R, Mousavi-Sabet H, Hedayati A, Rezaei A, Yalsuyi AM, Faggio C (2020) In vitro effects of silver nanoparticles on gills morphology of female guppy (Poecilia reticulate) after a short-term exposure. Microsc Res Tech 83(12):1552–1557

    Article  CAS  Google Scholar 

  36. Vijayakumar S, Vaseeharan B, Sudhakaran R, Jeyakandan J, Ramasamy P, Sonawane A, Padhi A, Velusamy P, Anbu P, Faggio C (2019) Bioinspired zinc oxide nanoparticles using Lycopersicon esculentum for antimicrobial and anticancer applications. J Cluster Sci 30(6):1465–1479

    Article  CAS  Google Scholar 

  37. Iswarya A, Vaseeharan B, Anjugam M, Gobi N, Divya M, Faggio C (2018) β-1, 3 glucan binding protein based selenium nanowire enhances the immune status of Cyprinus carpio and protection against Aeromonas hydrophila infection. Fish Shellfish Immunol 83:61–75

    Article  CAS  Google Scholar 

  38. El-Saadony MT, Desoky E-SM, Saad AM, Eid RS, Selem E, Elrys AS (2021) Biological silicon nanoparticles improve Phaseolus vulgaris L. yield and minimize its contaminant contents on a heavy metals-contaminated saline soil. J Environ Sci 106:1–14

    Article  CAS  Google Scholar 

  39. El-Saadony MT, El-Hack A, Mohamed E, Taha AE, Fouda MM, Ajarem JS, Maodaa NS, Allam AA, Elshaer N (2020) Ecofriendly synthesis and insecticidal application of copper nanoparticles against the storage pest Tribolium castaneum. Nanomaterials 10(3):587

    Article  CAS  Google Scholar 

  40. El-Saadony MT, El-Wafai NA, El-Fattah HIA, Mahgoub SA (2019) Biosynthesis, optimization and characterization of silver nanoparticles using a soil isolate of Bacillus pseudomycoides MT32 and their antifungal activity against some pathogenic fungi. Adv Anim Vet Sci 7(4):238–249

    Article  Google Scholar 

  41. Akl B, Nader MM, El-Saadony M (2020) Biosynthesis of silver nanoparticles by Serratia marcescens ssp sakuensis and its antibacterial application against some pathogenic bacteria. J Agric Chem Biotechnol 11(1):1–8

    Google Scholar 

  42. Ojha AK, Rout J, Behera S, Nayak P (2013) Green synthesis and characterization of zero valent silver nanoparticles from the leaf extract of Datura metel. Int J Pharm Res Allied 2(2):31–35

    CAS  Google Scholar 

  43. Javanshir Khoei A, Rezaei K (2021) Toxicity of titanium nano-oxide nanoparticles (TiO2) on the pacific oyster, Crassostrea gigas: immunity and antioxidant defence. Toxin Rev:1–10

  44. Khoei AJ (2021) Evaluation of potential immunotoxic effects of iron oxide nanoparticles (IONPs) on antioxidant capacity, immune responses and tissue bioaccumulation in common carp (Cyprinus carpio). Comp Biochem Physiol C Toxicol Pharmacol 244:109005

    Article  CAS  Google Scholar 

  45. Vajargah M, Yalsuyi A, Hedayati A (2018) Effects of dietary Kemin multi-enzyme on survival rate of common carp (Cyprinus carpio) exposed to abamectin.

  46. Vajargah MF (2021) A review on the effects of heavy metals on aquatic animals. J ISSN 2766:2276

    Google Scholar 

  47. Vajargah MF, Hedayati A (2014) Acute toxicity of trichlorofon on four viviparous fish: Poecilia latipinna, Poecilia reticulata, Gambusia holbrooki and Xiphophorus helleri (Cyprinodontiformes: Poeciliidae). J Coast Life Med 2(7):511–514

    Google Scholar 

  48. Yalsuyi AM, Hedayati A, Vajargah MF, Mousavi-Sabet H (2017) Examining the toxicity of cadmium chloride in common carp (Cyprinus carpio) and goldfish (Carassius auratus). J Environ Treat Tech 5(2):83–86

    Google Scholar 

  49. Doan V-D, Huynh B-A, Nguyen T-D, Cao X-T, Nguyen V-C, Nguyen TL-H, Nguyen HT, Le VT (2020) Biosynthesis of silver and gold nanoparticles using aqueous extract of Codonopsis pilosula roots for antibacterial and catalytic applications. J Nanomater 2020:1–18. https://doi.org/10.1155/2020/8492016

    Article  CAS  Google Scholar 

  50. Evans W (1989) Trease and Evans pharmacognosy Bailliere Tindall. London:216–217

  51. Veeramanikandan V, Madhu G, Pavithra V, Jaianand K, Balaji P (2017) Green synthesis, characterization of iron oxide nanoparticles using Leucas aspera leaf extract and evaluation of antibacterial and antioxidant studies. Int J Agric Innov Res 6(02):242–250

    Google Scholar 

  52. Mohanty B (2015) Nutritional value of food fish. Conspectus of Inland FisheriesManagement 4:15-21

  53. Řehulka J (1996) Blood parameters in common carp with spontaneous spring viremia (SVC). Aquacult Int 4:175–182

    Article  Google Scholar 

  54. Brain S, John A, Elkin S, Onno W (2000) Procedure for determining packed cell volume by the microhematocrit method. An NCCLS global concensus standard Approved standard 20 (18):1-24

  55. Dacie J (1990) Investigation of the abnormal hemoglobins-thalassemia. Practical Hematology

  56. Blaxhall P, Daisley K (1973) Routine haematological methods for use with fish blood. J Fish Biol 5(6):771–781

    Article  Google Scholar 

  57. Asaikkutti A, Bhavan PS, Vimala K, Karthik M, Cheruparambath P (2016) Dietary supplementation of green synthesized manganese-oxide nanoparticles and its effect on growth performance, muscle composition and digestive enzyme activities of the giant freshwater prawn Macrobrachium rosenbergii. J Trace Elem Med Biol 35:7–17

    Article  CAS  Google Scholar 

  58. Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the Folin-phenol reagent. Biol Chem 193(265):275

    Google Scholar 

  59. Floch J (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    Article  Google Scholar 

  60. Furne M, Hidalgo M, Lopez A, Garcia-Gallego M, Morales A, Domezain A, Domezaine J, Sanz A (2005) Digestive enzyme activities in Adriatic sturgeon Acipenser naccarii and rainbow trout Oncorhynchus mykiss. A comparative study. Aquaculture 250(1–2):391–398

    Article  CAS  Google Scholar 

  61. Bernfeld P (1955) Amylases a and b In Methods in enzymology, 1 Eds Colowick SP and Kaplan NO. Academic Press, New York,

  62. Farsani HG, Doria HB, Jamali H, Hasanpour S, Mehdipour N, Rashidiyan G (2017) The protective role of vitamin E on Oreochromis niloticus exposed to ZnONP. Ecotoxicol Environ Saf 145:1–7

    Article  Google Scholar 

  63. Forouhar Vajargah M, Imanpoor MR, Shabani A, Hedayati A, Faggio C (2019) Effect of long-term exposure of silver nanoparticles on growth indices, hematological and biochemical parameters and gonad histology of male goldfish (Carassius auratus gibelio). Microsc Res Tech 82(7):1224–1230

    Article  CAS  Google Scholar 

  64. Kim CY, Jang SC, Yi SC (2004) Preparation and stabilization of iron oxide nanoparticles using polymers. J Ceram Process Res 5(3):264–268

    Google Scholar 

  65. Thangapandiyan S, Alisha AA, Anidha K (2020) Growth performance, hematological and biochemical effects of iron oxide nanoparticles in Labeo rohita. Biocat Agric Biotechnol 25:101582

    Article  Google Scholar 

  66. Turakhia B, Turakhia P, Shah S (2018) Green synthesis of zero valent iron nanoparticles from Spinacia oleracea (spinach) and its application in waste water treatment. J Adv Res Appl Sci 5(1):46–51

    Google Scholar 

  67. Turakhia B, Chapla K, Turakhia P (2017) Green synthesis of zero valent iron nano particles from Coriandrum sativum (Coriander) and its application in reduction chemical oxygen demand and biological oxygen demand in waste water. South-Asian J Multidiscip Stud 5(1):132–139

    Google Scholar 

  68. Xin H, Yang X, Liu X, Tang X, Weng L, Han Y (2016) Biosynthesis of iron nanoparticles using tie guanyin tea extract for degradation of bromothymol blue. J Nanotechnol 2016

  69. Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Maaza M (2017) Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia thea (Osbeck.) and their pharmacognostic properties. Green Chem Lett Rev 10(4):186–201

    Article  CAS  Google Scholar 

  70. Kuang Y, Wang Q, Chen Z, Megharaj M, Naidu R (2013) Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. J Colloid Interface Sci 410:67–73

    Article  CAS  Google Scholar 

  71. Zhao Z, Liu J, Tai C, Zhou Q, Hu J, Jiang G (2008) Rapid decolorization of water soluble azo-dyes by nanosized zero-valent iron immobilized on the exchange resin. Sci China, Ser B: Chem 51(2):186–192

    Article  CAS  Google Scholar 

  72. Kanagasubbulakshmi S, Kadirvelu K (2017) Green synthesis of iron oxide nanoparticles using Lagenaria siceraria and evaluation of its antimicrobial activity. Def Life Sci J 2(4):422–427

    Article  Google Scholar 

  73. Huang K-C, Chou K-S (2007) Microstructure changes to iron nanoparticles during discharge/charge cycles. Electrochem Commun 9(8):1907–1912

    Article  CAS  Google Scholar 

  74. Mizutani N, Iwasaki T, Watano S, Yanagida T, Tanaka H, Kawai T (2008) Effect of ferrous/ferric ions molar ratio on reaction mechanism for hydrothermal synthesis of magnetite nanoparticles. Bull Mater Sci 31(5):713–717

    Article  CAS  Google Scholar 

  75. Lim C, Klesius P, Duncan P (1996) Immune response and resistance of channel catfish to Edwardsiella ictaluri challenge when fed various dietary levels of zinc methionine and zinc sulfate. J Aquat Anim Health 8(4):302–307

    Article  Google Scholar 

  76. Sealey WM, Lim C, Klesius P (1997) Influence of the dietary level of iron from iron methionine and iron sulfate on immune response and resistance of channel catfish to Edwardsiella ictaluri. J World Aquacult Soc 28(2):142–149

    Article  Google Scholar 

  77. Misra SG, Mani DM (1992) Metallic Pollution, 1st edn. Asish Publishing Inc, India

    Google Scholar 

  78. Davies F (1991) A hand book of environmental health and pollution hazards. University of California Press, Oxford

    Google Scholar 

  79. Burgos-Aceves MA, Lionetti L, Faggio C (2019) Multidisciplinary haematology as prognostic device in environmental and xenobiotic stress-induced response in fish. Sci Total Environ 670:1170–1183

    Article  CAS  Google Scholar 

  80. Kumar J, Priyadharshini M, Madhavi M, Begum SS, Ali AJ, Musthafa MS, Faggio C (2021) Impact of Hygrophila auriculata supplementary diets on the growth, survival, biochemical and haematological parameters in fingerlings of freshwater fish Cirrhinus mrigala (Hamilton, 1822). Comp Biochem Physiol A Mol Integr Physio 111097

  81. Bussons INB, da Silva Sousa E, Aride PHR, Duncan WLP, Pantoja-Lima J, Furuya WM, de Oliveira AT, Bussons MRFM, Faggio C (2021) Growth performance, hematological responses and economic indexes of Colossoma macropomum (Cuvier, 1818) fed graded levels of glycerol. Comp Biochem Physiol A Mol Integr Physio 249:109122

    CAS  Google Scholar 

  82. Sula E, Aliko V, Pagano M, Faggio C (2020) Digital light microscopy as a tool in toxicological evaluation of fish erythrocyte morphological abnormalities. Microsc Res Tech 83(4):362–369

    Article  CAS  Google Scholar 

  83. Khan AA, Jahangir MM, Zaif K, Khan A, Karim W, Zahid A, Samin G (2016) Nutritional and chemical profiles of Auricularia auricular mushrooms: a review. Int J Agric Environ Res 2(3):225–233

    Google Scholar 

  84. Akter N, Alam MJ, Jewel MAS, Ayenuddin M, Haque SK, Akter S (2018) Evaluation of dietary metallic iron nanoparticles as feed additive for growth and physiology of Bagridae catfish Clarias batrachus (Linnaeus, 1758). Int J Fish Aquat Stud 6(3):371–377

    Google Scholar 

  85. Arya A, Sharma GD (2015) Combined effects of cadmium and mercury on some biochemical and histochemical changes in liver, kidney and gills of Channa punctatus (Bloch). Int J Pharm Pharm Sci 7(8):117–120

    CAS  Google Scholar 

  86. Hori TSF, Avilez IM, Inoue LK, Moraes G (2006) Metabolical changes induced by chronic phenol exposure in matrinxã Brycon cephalus (teleostei: characidae) juveniles. Comp Biochem Physiol C: Toxicol Pharmacol 143(1):67–72

    Google Scholar 

  87. Dawood MA, Koshio S, Ishikawa M, Yokoyama S (2015) Interaction effects of dietary supplementation of heat-killed Lactobacillus plantarum and β-glucan on growth performance, digestibility and immune response of juvenile red sea bream. Pagrus major Fish Shellfish Immunol 45(1):33–42

    Article  CAS  Google Scholar 

  88. Swain P, Das R, Das A, Padhi SK, Das KC, Mishra SS (2019) Effects of dietary zinc oxide and selenium nanoparticles on growth performance, immune responses and enzyme activity in rohu, Labeo rohita (Hamilton). Aquacult Nutr 25(2):486–494

    Article  CAS  Google Scholar 

  89. Chinnadurai K, Eyini M, Balaji P (2019) Modulation of the reproductive hormone aromatase and vitellogenin in fumaronitrile exposed Oreochromis mossambicus. Curr Top Toxicol 15:123–131

    CAS  Google Scholar 

  90. Ghafarifarsani H, Hoseinifar SH, Aftabgard M, Van Doan H (2022) The improving role of savory (Satureja hortensis) essential oil for Caspian roach (Rutilus caspicus) fry: growth, haematological, immunological, and antioxidant parameters and resistance to salinity stress. Aquaculture 548:737653

    Article  CAS  Google Scholar 

  91. Yousefi M, Farsani MN, Ghafarifarsani H, Hoseinifar SH, Van Doan H (2021) The effects of dietary supplementation of mistletoe (Viscum album) extract on the growth performance, antioxidant, and innate, immune responses of rainbow trout (Oncorhynchus mykiss). Aquaculture 536:736385

    Article  CAS  Google Scholar 

  92. Ghafarifarsani H, Kachuei R, Imani A (2021) Dietary supplementation of garden thyme essential oil ameliorated the deteriorative effects of aflatoxin B1 on growth performance and intestinal inflammatory status of rainbow trout (Oncorhynchus mykiss). Aquaculture 531:735928

    Article  CAS  Google Scholar 

  93. Aliko V, Qirjo M, Sula E, Morina V, Faggio C (2018) Antioxidant defense system, immune response and erythron profile modulation in gold fish, Carassius auratus, after acute manganese treatment. Fish Shellfish Immunol 76:101–109

    Article  Google Scholar 

  94. Zaghloul K, Omar W, Abo-Hegab S (2006) Toxicity specificity of copper in some freshwater fishes. Egypt J Zool 47:383–400

    Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli and Department of Zoology, and Rani Anna Government Arts and Science College for Women, Tirunelveli, for their support and cooperation in the study. We gratefully acknowledge the support of the management of VHNSN College in Virudhunagar and MGR College in Hosur, Tamilnadu, India, in performing this study.

Author information

Authors and Affiliations

Authors

Contributions

P. Prema: Conceptualization; Methodology; Validation; Formal analysis; Investigation; Resources; Writing — Original Draft; Writing — Review & Editing; Ibrahim Sulaikal Beevi: Investigation; Formal analysis; Writing — Original Draft & Review; Beena Somanath: Formal analysis; Writing — Original Draft & Review; K. Ramesh Kumar: Formal analysis; Writing — Original Draft & Review; P. Balaji: Conceptualization; Methodology; Investigation; Formal analysis; Resources; Writing — Original Draft, Visualization, Writing — Review and Editing; and supervision; C. Faggio: Conceptualization; Methodology; Validation; Formal analysis; Investigation; Resources; Writing – Original Draft; Writing – Review & Editing.

Corresponding authors

Correspondence to Balaji Paulraj or Caterina Faggio.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights of the Study

• Green tea mediated iron oxide nanoparticles (nano-Fe) was novelly synthesized

• Fish fed a diet enriched with nano-Fe exhibited better growth rate

• Nano-Fe increased the hematological parameters and antioxidant activity

• A total of 40 mg/kg nano-Fe diet has been helpful in ornamental fish farming as a supplement

• Nano-Fe is evaluated as a suitable commercial feed for blue gourami culture

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 970 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paulpandian, P., Beevi, I.S., Somanath, B. et al. Impact of Camellia sinensis Iron Oxide Nanoparticle on Growth, Hemato-biochemical and Antioxidant Capacity of Blue Gourami (Trichogaster trichopterus) Fingerlings. Biol Trace Elem Res 201, 412–424 (2023). https://doi.org/10.1007/s12011-022-03145-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03145-2

Keywords

Navigation