Skip to main content
Log in

Short-term Dietary Selenium Deficiency Induced Liver Fibrosis by Inhibiting the Akt/mTOR Signaling Pathway in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effects of short-term dietary selenium deficiency on the liver and protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway were evaluated. Fourteen growing rats were randomly divided into control and selenium deficiency groups and fed standard and selenium-deficient diets for 4 weeks, respectively. The serum and liver selenium concentrations were measured to evaluate the construction of animal models with selenium deficiency. Liver tissues were analyzed by transmission electron microscope, hematoxylin–eosin staining, and Masson staining to observe the ultrastructural changes, pathological changes, and severity of liver fibrosis, respectively. Besides, immunohistochemical staining (IHC) was used to analyze the effects of selenium deficiency on the expression of key proteins in the Akt/mTOR signaling pathway. The results showed that selenium concentrations in the serum and liver tissue were significantly lower in the selenium deficiency group than in the control group, and the selenium deficiency intervention could affect the morphology and structure of hepatocytes and mitochondria. Meanwhile, the liver tissue showed structural damage and fibrotic changes in the selenium deficiency group. The IHC results showed the positive staining rates of Akt, phosphorylation-modified protein kinase B (p-Akt), mTOR, and phosphorylation-modified mammalian target of the rapamycin (p-mTOR) in the liver of the selenium deficiency group which were significantly lower than that of the control group. In conclusion, short-term selenium deficiency dietary intervention could lead to liver fibrosis by inhibiting the Akt/mTOR signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rayman MP (2012) Selenium and human health. Lancet 379(9822):1256–1268

    Article  CAS  PubMed  Google Scholar 

  2. Wang N, Tan HY, Li S, Xu Y, Guo W, Feng Y (2017) Supplementation of micronutrient selenium in metabolic diseases: its role as an antioxidant. Oxid Med Cell Longev 2017:7478523

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rayman MP (2000) The importance of selenium to human health. Lancet 356(9225):233–241

    Article  CAS  PubMed  Google Scholar 

  4. Avery JC, Hoffmann PR (2018) Selenium, selenoproteins, and immunity. Nutrients 10(9):1203

    Article  PubMed  PubMed Central  Google Scholar 

  5. Qiao LC, Guo ZW, Liu HB, Liu JX, Lin X, Deng H, Liu X, Zhao Y, Xiao X, Lei J, Han J (2022) Protective effect of mitophagy regulated by mTOR signaling pathway in liver fibrosis associated with selenium. Nutrients 14(12):2410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roman M, Jitaru P, Barbante C (2014) Selenium biochemistry and its role for human health. Metallomics 6(1):25–54

    Article  CAS  PubMed  Google Scholar 

  7. Bulteau AL, Chavatte L (2015) Update on selenoprotein biosynthesis. Antioxid Redox Signal 23(10):775–794

    Article  CAS  PubMed  Google Scholar 

  8. Tan LC, Nancharaiah YV, van Hullebusch ED, Lens PNL (2016) Selenium: environmental significance, pollution, and biological treatment technologies. Biotechnol Adv 34(5):886–907

    Article  CAS  PubMed  Google Scholar 

  9. Ha HY, Alfulaij N, Berry MJ, Seale LA (2019) From selenium absorption to selenoprotein degradation. Biol Trace Elem Res 192(1):26–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shang N, Wang X, Shu Q, Wang H, Zhao L (2019) The functions of selenium and selenoproteins relating to the liver diseases. J Nanosci Nanotechnol 19(4):1875–1888

    Article  CAS  PubMed  Google Scholar 

  11. Burk RF, Hill KE (2015) Regulation of selenium metabolism and transport. Annu Rev Nutr 7(35):109–134

    Article  Google Scholar 

  12. Lei XG, Evenson JK, Thompson KM, Sunde RA (1995) Glutathione peroxidase and phospholipid hy-droperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium. J Nutr 125:1438–1446

    CAS  PubMed  Google Scholar 

  13. Hill KE, Wu S, Motley AK, Stevenson TD, Winfrey VP, Capecchi MR, Atkins JF, Burk RF (2012) Production of selenoprotein P (Sepp1) by hepatocytes is central to selenium homeostasis. J Biol Chem 287:40414–40424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Han J, Liang H, Yi J, Tan W, He S, Wang S, Li F, Wu X, Ma J, Shi X, Guo X, Bai C (2017) Long-term selenium-deficient diet induces liver damage by altering hepatocyte ultrastructure and MMP1/3 and TIMP1/3 expression in growing rats. Biol Trace Elem Res 175(2):396–404

    Article  CAS  PubMed  Google Scholar 

  15. Sullivan JF, Blotcky AJ, Jetton MM, Hahn HK, Burch RE (1979) Serum levels of selenium, calcium, copper magnesium, manganese and zinc in various human diseases. J Nutr 109(8):1432–1437

    Article  CAS  PubMed  Google Scholar 

  16. Aaseth J, Alexander J, Thomassen Y, Blomhoff JP, Skrede S (1982) Serum selenium levels in liver diseases. Clin Biochem 15(6):281–283

    Article  CAS  PubMed  Google Scholar 

  17. Burk RF, Early DS, Hill KE, Palmer IS, Boeglin ME (1998) Plasma selenium in patients with cirrhosis. Hepatology 27(3):794–798

    Article  CAS  PubMed  Google Scholar 

  18. George J (2018) Determination of selenium during pathogenesis of hepatic fibrosis employing hydride generation and inductively coupled plasma mass spectrometry. Biol Chem 399(5):499–509

    Article  CAS  PubMed  Google Scholar 

  19. Petrovski BÉ, Pataki V, Jenei T, Adány R, Vokó Z (2012) Selenium levels in men with liver disease in Hungary. J Trace Elem Med Biol 26(1):31–35

    Article  CAS  PubMed  Google Scholar 

  20. Prystupa A, Kiciński P, Luchowska-Kocot D, Błażewicz A, Niedziałek J, Mizerski G, Jojczuk M, Ochal A, Sak JJ, Załuska W (2017) Association between serum selenium concentrations and levels of proinflammatory and profibrotic cytokines-interleukin-6 and growth differentiation factor-15, in patients with alcoholic liver cirrhosis. Int J Environ Res Public Health 14(4):437

    Article  PubMed  PubMed Central  Google Scholar 

  21. Reja M, Makar M, Visaria A, Marino D, Rustgi V (2020) Increased serum selenium levels are associated with reduced risk of advanced liver fibrosis and all-cause mortality in NAFLD patients: National Health and Nutrition Examination Survey (NHANES) III. Ann Hepatol 19(6):635–640

    Article  CAS  PubMed  Google Scholar 

  22. Li J, Deng X, Wang S, Jiang Q, Xu K (2021) Resolvin D1 attenuates CCl4 induced liver fibrosis by inhibiting autophagy-mediated HSC activation via AKT/mTOR pathway. Front Pharmacol 12:792414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jung K, Kim M, So J, Lee SH, Ko S, Shin D (2021) Farnesoid X receptor activation impairs liver progenitor cell-mediated liver regeneration via the PTEN-PI3K-AKT-mTOR axis in zebrafish. Hepatology 74(1):397–410

    Article  CAS  PubMed  Google Scholar 

  24. Zhang M, Xue Y, Zheng B, Li L, Chu X, Zhao Y, Wu Y, Zhang J, Han X, Wu Z, Chu L (2021) Liquiritigenin protects against arsenic trioxide-induced liver injury by inhibiting oxidative stress and enhancing mTOR-mediated autophagy. Biomed Pharmacother 143:112167

    Article  CAS  PubMed  Google Scholar 

  25. Ishak K, Baptista A, Bianchi L, Callea F, De Groote J, Gudat F, Denk H, Desmet V, Korb G, MacSween RN (1995) Histological grading and staging of chronic hepatitis. J Hepatol 22:696–699

    Article  CAS  PubMed  Google Scholar 

  26. Zhang L, Du YF, Chen YZ, Xu JY, Wang B, Qin LQ (2020) New progress of selenium and hepatic injury. Modern Preventive Medicine 47(22):4218–4220

    Google Scholar 

  27. Kvícala J (1999) Selenium and the organism. Casopís Lékar Ceskych 138(4):99–106

    Google Scholar 

  28. Schomburg L, Hughes DJ (2017) The missing link? The potential role of selenium in the development of liver cancer and significance for the general population. Expert Rev Gastroenterol Hepatol 11(8):707–709

    Article  CAS  PubMed  Google Scholar 

  29. Zhang M, Song G, Minuk GY (1996) Effects of hepatic stimulator substance, herbal medicine, selenium/vitamin E, and ciprofloxacin on cirrhosis in the rat. Gastroenterology 110(4):1150–1155

    Article  CAS  PubMed  Google Scholar 

  30. Zhao LL, Chen J, Yan LJ, Pei JR, Gao L, Li XZ, Liu MF, Li SC, Zhou LW, Liu ZQ, Wang T (2012) Effect of selenium, protein and vitamin E deficiency on mRNA expression of rat cardiac selenoprotein. Chin J Endem 31(3):279–282

    CAS  Google Scholar 

  31. Pan XQ, Wei J, Wang R, Zhu YH, Zhang M, Lin L, Dan H, Yan R, He L (2013) Effects of selenium deficiency on cardiac function and mitochondrial ultrastructure of rat myocardium. Chin J Endem 32(4):378–383

    CAS  Google Scholar 

  32. Han FC, Yuan SF (1992) Changes of activities of mitochondrial membrane binding enzymes in rats fed with low selenium diet. J Xi’an Jiaotong Univ (Medical Sciences) 13(4):316–320

    CAS  Google Scholar 

  33. Saks VA, Chernousova GB, Voronkov II, Smirnov VN, Chazov EI (1974) Study of energy transport mechanism in myocardial cells. Circ Res 35(Suppl 3):138–149

    PubMed  Google Scholar 

  34. Barnett R (2018) Liver cirrhosis. Lancet 392(10144):275

    Article  PubMed  Google Scholar 

  35. Aydın MM, Akçalı KC (2018) Liver fibrosis. Turk J Gastroenterol 29(1):14–21

    Article  PubMed  PubMed Central  Google Scholar 

  36. Schuppan D, Afdhal NH (2008) Liver cirrhosis. Lancet 371(9615):838–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu L, Geng X, Cai Y, Copple B, Yoshinaga M, Shen J, Nebert DW, Wang H, Liu Z (2018) Hepatic ZIP8 deficiency is associated with disrupted selenium homeostasis, liver pathology, and tumor formation. Am J Physiol Gastrointest Liver Physiol 315(4):G569–G579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang R, Song F, Li S, Wu B, Gu Y, Yuan Y (2019) Salvianolic acid A attenuates CCl4-induced liver fibrosis by regulating the PI3K/AKT/mTOR, Bcl-2/Bax and caspase-3/cleaved caspase-3 signaling pathways. Drug Des Devel Ther 13:1889–1900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shen M, Guo M, Wang Z, Li Y, Kong D, Shao J, Tan S, Chen A, Zhang F, Zhang Z, Zheng S (2020) ROS-dependent inhibition of the PI3K/Akt/mTOR signaling is required for Oroxylin A to exert anti-inflammatory activity in liver fibrosis. Int Immunopharmacol 85:106637

    Article  CAS  PubMed  Google Scholar 

  40. Wu CH, Shen M, Li L, Wei J (2015) Association between PI3K/Akt/mTOR/p70S6K signaling pathway and hepatic fibrosis. J Clin Hepatol 31(11):1928–1932

    CAS  Google Scholar 

  41. Huang C, Li J, Ma TT (2011) PI3K/Akt signaling pathway and liver fibrosis. Chin Pharmaco Bull 27(8):1037–1041

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Jian Lei and Huan Deng for their participation in the experiments of this study.

Funding

This study was supported by the National Natural Science Foundation of China (No. 81872567).

Author information

Authors and Affiliations

Authors

Contributions

Study design: Jing Han and Lichun Qiao. Animal experiments: Lichun Qiao, Xue Lin, Yan Zhao, and Haobiao Liu. Data collection: Ziwei Guo, Qingfeng Wang, and Mei You. Statistical analysis: Zhihao Yang and Qian Yuan. Figure preparation: Xue Lin, Jiaxin Liu, and Wenming Bian. Manuscript preparation: Lichun Qiao and Jing Han. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jing Han.

Ethics declarations

Ethics Approval and Consent to Participate

The study protocol was approved by the Medical Animal Research Ethics Committee of Xi’an Jiaotong University (protocol code 2018.263 and 6 March 2018 of approval).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, L., Lin, X., Zhao, Y. et al. Short-term Dietary Selenium Deficiency Induced Liver Fibrosis by Inhibiting the Akt/mTOR Signaling Pathway in Rats. Biol Trace Elem Res 201, 3825–3833 (2023). https://doi.org/10.1007/s12011-022-03453-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03453-7

Keywords

Navigation