Skip to main content
Log in

Silibinin potentially attenuates arsenic-induced oxidative stress mediated cardiotoxicity and dyslipidemia in rats

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Cardiac dysfunction is one of the major causes of mortality and morbidity throughout the world. Chronic exposure of arsenic (As) mainly leads to cardiotoxic effect. Cardiotoxicity was induced by the sodium arsenite as the source of As (5 mg/kg BW, PO) for 4 weeks. As intoxication significantly (p < 0.05) increased the serum cardiac markers, viz. creatine kinase-MB, lactate dehydrogenase, aspartate transaminase, alanine transaminase and alkaline phosphatase, oxidative stress markers in heart, plasma total cholesterol (TC), triglycerides (TG), phospholipids (PL), free fatty acids (FFA), low density lipoprotein cholesterol, very low density lipoprotein cholesterol as well as cardiac lipid profile (TC, TG and FFA) and significantly (p < 0.05) decreased the level of serum high density lipoprotein cholesterol, cardiac PL, mitochondrial enzymes such as ICDH, SDH, MDH, α-KDH and NADH dehydrogenase, levels of enzymatic antioxidant, nonenzymatic antioxidants and membrane-bound ATPases in heart. In addition, As-intoxicated rats showed a significant (p < 0.05) up-regulation of myocardial NADPH (NOX) oxidase sub units such as NOX2 and NOX4 as well as Keap-1 and down-regulation of Nrf2 and HO-1 protein expressions. Pre-administration of silibinin (SB) (75 mg/kg BW) remarkably recovered all these altered parameters to near normalcy in As-induced cardiotoxic rat. Moreover, the light microscopic and transmission electron microscopic study further supports the protective efficacy of SB on the heart mitochondria. In conclusion, our data demonstrate that SB has a potential to extenuate the arsenic-induced cardiotoxicity and dyslipidemia in rat.

Graphical Abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Devesa, V., Velez, D., & Montoro, R. (2008). Effect of thermal treatments on arsenic species contents in food. Food and Chemical Toxicology, 46, 1–8.

    Article  CAS  PubMed  Google Scholar 

  2. Vieira, C., Morais, S., Ramos, S., Delerue-Matos, C., & Oliveira, M. B. (2011). Mercury, cadmium, lead and arsenic levels in three pelagic fish species from the Atlantic Ocean: Intra- and inter-specific variability and human health risks for consumption. Food and Chemical Toxicology, 49, 923–932.

    Article  CAS  PubMed  Google Scholar 

  3. Majhi, C. R., Khan, S., Leo, M. D., Manimaran, A., Sankar, P., & Sarkar, S. N. (2011). Effects of acetaminophen on reactive oxygen species and nitric oxide redox signaling in kidney of arsenic-exposed rats. Food and Chemical Toxicology, 49, 974–982.

    Article  CAS  PubMed  Google Scholar 

  4. Patra, P. H., Bandyopadhyay, S., Kumar, R., Datta, B. K., Maji, C., Biswas, S., et al. (2012). Quantitative imaging of arsenic and its species in goat following long term oral exposure. Food and chemical Toxicology, 50, 1946–1950.

    Article  CAS  PubMed  Google Scholar 

  5. Ratnaike, R. N. (2003). Acute and chronic arsenic toxicity. Postgraduate Medical Journal, 79, 391–396.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Manna, P., Sinha, M., & Sil, P. C. (2008). Arsenic induced oxidative myocardial injury: Protective role of arjunolic acid. Archives of Toxicology, 82, 137–149.

    Article  CAS  PubMed  Google Scholar 

  7. Yamauchi, H., Aminaka, Y., Yoshida, K., Sun, G., Pi, J., & Waalkes, M. P. (2004). Evaluation of DNA damage in patients with arsenic poisoning: Urinary 8-hydroxydeoxyguanine. Toxicology and Applied Pharmacology, 198, 291–296.

    Article  CAS  PubMed  Google Scholar 

  8. Tchounwou, P. B., Patlolla, A. K., & Centeno, J. A. (2003). Carcinogenic and systemic health effects associated with arsenic exposure–a critical review. Toxicologic Pathology, 31, 575–588.

    CAS  PubMed  Google Scholar 

  9. Duranteau, J., Chandel, N. S., Kulisz, A., Shao, Z., & Schumacker, P. T. (1998). Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. Journal of Biological Chemistry, 273, 11619–11624.

    Article  CAS  PubMed  Google Scholar 

  10. Chang, S. I., Jin, B., Youn, P., Park, C., Park, J. D., & Ryu, D. Y. (2007). Arsenic induced toxicity and the protective role of ascorbic acid in mouse testis. Toxicology and Applied Pharmacology, 218, 196–203.

    Article  CAS  PubMed  Google Scholar 

  11. Hei, T. K., Liu, S. X., & Waldren, C. (1998). Mutagenicity of arsenic in mammalian cells: Role of reactive oxygen species. USA. Proceedings of the National Academy of Sciences, 95, 8103–8104.

    Article  CAS  Google Scholar 

  12. Zhao, X. Y., Li, G. Y., Liu, Y., ChaiChen, J. X., Zhang, Y., Du, Z. M., et al. (2008). Resveratrol protects against arsenic trioxide induced cardiotoxicity in vitro and in vivo. British journal of pharmacology, 154, 105–113.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Shi, H., Shi, X., & Liu, K. J. (2004). Oxidative mechanism of arsenic toxicity and carcinogenesis. Molecular and Cellular Biochemistry, 255, 67–78.

    Article  CAS  PubMed  Google Scholar 

  14. Krijnen, P. A., Meischl, C., Hack, C. E., Meijer, C. J., Visser, C. A., Roos, D., et al. (2003). Increased Nox2 expression in human cardiomyocytes after acute myocardial infarction. Journal of Clinical Pathology, 56, 194–199.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Rude, M. K., Duhaney, T. A., Kuster, G. M., Judge, S., Heo, J., Colucci, W. S., et al. (2005). Aldosterone stimulates matrix metalloproteinases and reactive oxygen species in adult rat ventricular cardiomyocytes. Hypertension, 46, 555–561.

    Article  CAS  PubMed  Google Scholar 

  16. Xiao, L., Pimentel, D. R., Wang, J., Singh, K., Colucci, W. S., & Sawyer, D. B. (2002). Role of reactive oxygen species and NAD(P)H oxidase in alpha(1)-adrenoceptor signaling in adult rat cardiac myocytes. American Journal of Physiology. Cell Physiology, 282, 926–934.

    Article  Google Scholar 

  17. Bedard, K., & Krause, K. (2007). The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology. Physiological Reviews, 87, 245–313.

    Article  CAS  PubMed  Google Scholar 

  18. Oudot, A., Vergely, C., Ecarnot-Laubriet, A., & Rochette, L. (2003). Angiotensin II activates NADPH oxidase in isolated rat hearts subjected to ischaemia-reperfusion. European Journal of Pharmacology, 462, 145–154.

    Article  CAS  PubMed  Google Scholar 

  19. Surh, Y. J. (2003). Cancer chemoprevention with dietary phytochemicals. Nature Reviews Cancer, 3, 768–780.

    Article  CAS  PubMed  Google Scholar 

  20. Kim, H., Erickson, B., Luo, W., Seward, D., Graber, J. H., Pollock, D. D., et al. (2010). Gene-specific RNA polymerase II phosphorylation and the CTD code. Nature Structural and Molecular Biology, 17, 1279–1286.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Negi, A. S., Kumar, J. K., Luqman, S., Shanker, K., Gupta, M. M., & Khanuja, S. P. S. (2008). Recent advances in plant hepatoprotectives: A chemical and biological profile of some important leads. Medicinal Research Reviews, 28, 746–772.

    Article  CAS  PubMed  Google Scholar 

  22. Muthumani, M., & Milton Prabu, S. (2012). Silibinin potentially protects arsenic-induced oxidative hepatic dysfunction in rats. Toxicology Mechanisms and Methods, 22(4), 277–288.

  23. Faulstich, H., Jahn, W., & Wieland, T. (1980). Sylibin inhibition of amatoxin uptake in the perfused rat liver. Arzneimittel-Forschung Drug Reserch, 30, 452–454.

    CAS  Google Scholar 

  24. Middleton, E., & Kandaswami, C. (1992). Effects of flavonoids on immune and inflammatory cell function. Biochemical Pharmacology, 43, 1167–1179.

    Article  CAS  PubMed  Google Scholar 

  25. Sonnenbichler, J., & Zetl, I. (1987). Stimulating influence of a flavolignane derivative on proliferation, RNA synthesis and protein synthesis in liver cells. In I. Okolicsanyi, G. Cosmos, & G. Crepadi (Eds.), Assessment and Management of Hepatobiliary Disease (pp. 265–272). Berlin: Springer Verlag.

    Chapter  Google Scholar 

  26. Mira, L., Silva, M., & Manso, C. F. (1994). Scavenging of reactive oxygen species by silibinidihemisuccinate. Biochemical Pharmacology, 48, 753–759.

    Article  CAS  PubMed  Google Scholar 

  27. Saller, R., Meier, R., & Brignoli, R. (2001). The use of silymarin in the treatment of liver diseases. Drugs, 61, 2035–2063.

    Article  CAS  PubMed  Google Scholar 

  28. Pietrangelo, A., Borella, F., Casalgrandi, G., Montosi, G., Ceccarelli, D., Gallesi, D., et al. (1995). Antioxidant activity of silybin in vivo during long-term iron overload in rats. Gastroenterology, 109, 1941–1949.

    Article  CAS  PubMed  Google Scholar 

  29. Agoston, M., Cabello, R. G., Blazovics, A., Feher, J., & Vereckei, A. (2001). The effect of aminodarone and/or antioxidant treatment on splenocyte blast transformation. Toxicology, 254, 29–41.

    Google Scholar 

  30. Kittur, S., Wilasrusmee, S., Pedersen, W. A., Mattson, M. P., Straube-West, K., Wilasrusmee, C., et al. (2002). Neurotrophic and neuroprotective effects of milk thistle (Silybum marianum) on neurons in culture. Journal of Molecular Neuroscience, 18, 265–269.

    Article  CAS  PubMed  Google Scholar 

  31. North, D. W., Gibb, H. J., & Abernathy, C. O. (1997). As: Past, present and future considerations. In C. O. Abernathy, R. L. Calderon, & W. R. Chappell (Eds.), As Exposure and Health Effects (pp. 407–423). London, UK: Chapman and Hall.

    Google Scholar 

  32. Takasawa, M., Hayakawa, M., Sugiyama, S., Hattori, K., Ito, T., & Ozawa, T. (1993). Age associated damage in mitochondrial function in rat hearts. Experimental Gerontology, 28, 269–280.

    Article  CAS  PubMed  Google Scholar 

  33. King, J. (1965). Isocitrate dehydrogenase. In: King JC, Van D, eds. Practical Clinical Enzymology. London: Nostrand Co.363.

  34. Slater, E. C., & Borner, W. D. (1952). The effect of fluoride on the succinic oxidase system. Biochemical Journal, 52, 185–196.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Mehler, A. H., Kornberg, A., Grisolia, S., & Ochoa, S. (1948). The enzymatic mechanisms of oxidation reductions between malate or isocitrate or pyruvate. Journal of Biological Chemistry, 174, 961–977.

    CAS  PubMed  Google Scholar 

  36. Reed, L. J., & Mukherjee, R. B. (1969). α-Ketoglutarate dehydrogenase complex from Escherichia coli. In J. M. Lowenstein (Ed.), Methods in Enzymology (pp. 53–61). London: Academic Press.

    Google Scholar 

  37. Minakami, S., Ringler, R. L., & Singer, T. P. (1962). Studies on the respiratory chainlinked dihydrodiphosphopyridine nucleotide dehydrogenase. I. Assay of the enzyme in particulate and in soluble preparations. Journal of Biological Chemistry, 237, 569–576.

    CAS  PubMed  Google Scholar 

  38. Folch, J., Lees, M., & Sloane Stanly, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226(1), 497–509.

    CAS  PubMed  Google Scholar 

  39. Allain, C. C., Poon, L. S., Chan, C. S. G., Richmond, W., & Fu, P. C. (1974). Enzymatic determination of total serum cholesterol. Clinical Chemistry, 20(4), 470–475.

    CAS  PubMed  Google Scholar 

  40. McGowan, M. W., Artiss, J. D., Strandbergh, D. R., & Zak, B. (1983). A peroxidase-coupled method for the colorimetric determination of serum triglycerides. Clinical Chemistry, 29(3), 538–542.

    CAS  PubMed  Google Scholar 

  41. Zilversmit, D. B., & Davis, A. K. (1950). Micro determination of plasma phospholipids by trichloroacetic acid precipitation. Journal of Laboratory and Clinical Medicine, 35(1), 155–160.

    CAS  PubMed  Google Scholar 

  42. Falholt, K., Lund, B., & Falholt, W. (1973). An easy colorimetric method for routine determination of free fatty acid in plasma. Clinica Chimica Acta, 46(2), 105–111.

    Article  CAS  Google Scholar 

  43. Izzo, C., Grillo, F., & Murador, E. (1981). Improved method for determination of highdensity-lipoprotein cholesterol I. Isolation of high-density lipoproteins by use of polyethylene glycol 6000. Clinical Chemistry, 27(3), 371–374.

    CAS  PubMed  Google Scholar 

  44. Friedwald, W. T., Levy, R. J., & Fredricken, D. S. (1972). Estimation of VLDL-cholesterol in the plasma without the use of preparative ultracentrifuge. Clinical Chemistry, 18(6), 449–502.

    Google Scholar 

  45. Niehaus, W. G, Jr, & Samuelsson, B. (1968). Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. European Journal of Biochemistry, 6, 126–130.

    Article  CAS  PubMed  Google Scholar 

  46. Jiang, Z. Y., Hunt, J. Y., & Wolff, S. P. (1992). Detection of lipid hydroperoxides using the “fox method”. Analytical Biochemistry, 202, 384–389.

    Article  CAS  PubMed  Google Scholar 

  47. Levine, R. L., Garland, D., Oliver, C. N., Amic, A., Climent, I., Lenz, A. G., et al. (1999). Determination of carbonyl content in oxidatively modified proteins. Method. Enzymol, 186, 464–478.

    Article  Google Scholar 

  48. Rao, K. S., & Recknagel, R. O. (1968). Early onset of lipoperoxidation in rat liver after carbon tetrachloride administration. Experimental and Molecular Pathology, 9, 271–278.

    Article  CAS  PubMed  Google Scholar 

  49. Ellman, G. L. (1959). Tissue sulfhydryl groups. Arch. Biochem Biophys, 82, 70–77.

    Article  CAS  Google Scholar 

  50. Omaye, S.T., Turbull, T.D., Sauberlich, H.C. (1979). Selected method for the determination of ascorbic acid in animal cells, tissues and fluids.In: McCormic DB, Wright DL., eds. Methods in Enzymology. New York, NY: Academic Press, 3–11.

  51. Desai, I. D. (1984). Vitamin E analysis methods for animal tissues. Meth. Enzymol, 105, 138–147.

    Article  CAS  PubMed  Google Scholar 

  52. Kakkar, P., Das, B., & Viswanathan, P. N. (1984). A modified spectrophotometric assay of superoxide dismutase. Indian Journal of Biochemistry & Biophysics, 21, 130–132.

    CAS  Google Scholar 

  53. Sinha, A. K. (1972). Colorimetric assay of catalase. Analytical Biochemistry, 47, 389–394.

    Article  CAS  PubMed  Google Scholar 

  54. Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., & Hoekstra, W. G. (1973). Selenium: Biochemical role as a component of glutathione peroxidase. Science, 179, 588–590.

    Article  CAS  PubMed  Google Scholar 

  55. Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249, 7130–7139.

    CAS  PubMed  Google Scholar 

  56. Horn, H. D., & Burns, F. H. (1978). Assay of glutathione reductase activity. In H. V. Bergmeyer (Ed.), Methods of Enzymatic Analysis (pp. 142–146). New York: Academic Press.

    Google Scholar 

  57. Beutler, E. (1983). Active transport of glutathione disulfide from erythrocytes. In: Larson A, Orrenius S, Holmgren A, Mannerwik BEDS., eds. Functions of Glutathione, Biochemical, Physiological, Toxicological and Clinical Aspects. New York, NY: Raven Press, 65.

  58. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  PubMed  Google Scholar 

  59. Bonting, S. L. (1970). Membrane and ion transport, presence of enzyme systems in mammalian tissues (pp. 257–263). London, UK: Wiley Interscience.

    Google Scholar 

  60. Ohnishi, T., Suzuki, T., Suzuki, Y., & Ozawa, K. (1982). A comparative study of plasma membrane Mg2 + -ATPase activities in normal, regenerating and malignant cells. Biochimica et Biophysica Acta, 684, 67–74.

    Article  CAS  PubMed  Google Scholar 

  61. Hjertén, S., & Pan, H. (1983). Purification and characterization of two forms of a low-affinity Ca2 + -ATPase from erythrocyte membranes. Biochimica et Biophysica Acta, 728, 281–288.

    Article  PubMed  Google Scholar 

  62. Basiglio, C. L., Sanchez Pozzi, E. J., Mottino, A. D., & Roma, M. G. (2009). Differential effects of silymarin and its active component SB on plasma membrane stability and hepatocellular lysis. Chemico-Biol. Interact, 179, 297–303.

    Article  CAS  Google Scholar 

  63. Ramanathan, K., Shila, S., Kumaran, S., & Panneerselvam, C. (2003). Ascorbic acid and α-tocopherol as potent modulators on arsenic induced toxicity in mitochondria. The journal of nutritional biochemistry, 14(7), 416–420.

    Article  CAS  PubMed  Google Scholar 

  64. Chattopadhyay, S., Maiti, S., Maji, G., Deb, B., Pan, B., & Ghosh, D. (2011). Protective role of Moringa oleifera (Sajina) seed on arsenic-induced hepatocellular degeneration in female albino rats. Biological Trace Element Research, 142, 200–212.

    Article  CAS  PubMed  Google Scholar 

  65. Mccarty, M. F. (2005). Potential utility of natural polyphenols for reversing fat-induced insulin resistance. Medical Hypotheses, 64(3), 628–635.

    Article  CAS  PubMed  Google Scholar 

  66. Radhiga, T., Rajamanickam, C., Senthil, S., & Pugalendi, K. V. (2012). Effect of ursolic acid on cardiac marker enzymes, lipid profile and macrosco. Food and Chemical Toxicology, 50, 3971–3977.

    Article  CAS  PubMed  Google Scholar 

  67. Haddad, Y., Vallerand, D., Brault, A., & Haddad, P. S. (2009). Antioxidant and hepatoprotective effects of SB in a rat modal of nonalcoholic steatohepatitis. Neprology, 164, 1–11.

    Google Scholar 

  68. Yamanaka, K., Hasegawa, A., Sawamura, R., & Okada, S. (1991). Cellular response to oxidative damage in lung induced by administration of dimethyl arsenic acid, a major metabolite of inorganic arsenic in mice. Toxicology and Applied Pharmacology, 108, 205–213.

    Article  CAS  PubMed  Google Scholar 

  69. Hill, M. F., & Singal, P. K. (1997). Right and left myocardial antioxidant responses during heart failure subsequent to myocardial infarction. Circulation, 96, 2414–2420.

    Article  CAS  PubMed  Google Scholar 

  70. Forgione, M. A., Cap, A., Liao, R., et al. (2002). Heterozygous cellular glutathione peroxidase deficiency in the mouse: Abnormalities in vascular and cardiac function and structure. Circulation, 106, 1154–1158.

    Article  CAS  PubMed  Google Scholar 

  71. Li, S., Li, X., & Rozanski, G. J. (2003). Regulation of glutathione in cardiac myocytes. Journal of Molecular and Cellular Cardiology, 35, 1145–1152.

    Article  CAS  PubMed  Google Scholar 

  72. Rajnarayana, K., Sripalreddy, M., Chaluvadi, M. R., & Krishna, D. R. (2001). Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential. Indian journal of pharmacology, 33, 2–16.

    Google Scholar 

  73. Smith, K. R., & Klei, L. R. (2001). Barchowsky A. Arsenite stimulates plasma membrane NADPH oxidase in vascular endothelial cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 280, 442–449.

    Google Scholar 

Download references

Acknowledgments

Authors extend their thanks to the Professor and Head, Department of Zoology and UGC-SAP for their generous support in this study.

Conflict of interest

The authors declare that there is no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Milton Prabu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muthumani, M., Prabu, S.M. Silibinin potentially attenuates arsenic-induced oxidative stress mediated cardiotoxicity and dyslipidemia in rats. Cardiovasc Toxicol 14, 83–97 (2014). https://doi.org/10.1007/s12012-013-9227-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-013-9227-x

Keywords

Navigation