Skip to main content
Log in

RETRACTED ARTICLE: Alpha-Lipoic Acid Protects Against Doxorubicin-Induced Cardiotoxicity by Regulating Pyruvate Dehydrogenase Kinase 4

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

This article was retracted on 03 April 2023

This article has been updated

Abstract

As a widely used anti-tumor anthracycline, the accumulation of Doxorubicin (DOX) in body causes irreparable cardiomyocyte damage and therefore is limited in clinical application. Strategies to prevent from DOX-associated cardiotoxicity are urgent for patients who undergo DOX-based chemotherapy. Since oxidative stress injury being the major reason for myocardial toxicity of DOX, here we demonstrated that, Alpha-lipoic acid (ALA), which is a reductive agent, plays a cardioprotective role in attenuating DOX-induced cardiotoxicity by inhibiting pyruvate dehydrogenase kinase 4 (PDK4) expression. In vivo, the beneficial effect of ALA was evidenced by increased survival rate, mechanical contraction, and oxidative phosphorylation, while decreased reactive oxidative species (ROS) and apoptosis. In vitro, PDK4 overexpression remarkably increased DOX-induced apoptosis and ROS production in H9C2 cells. Notably, the protective effect of ALA was abrogated by PDK4 overexpression. We further used PDK4 knockout mice to identify the role of PDK4 in DOX-induced cardiotoxicity. Results elicited that PDK4 deficiency showed a consistent effect in protecting DOX cardiotoxicity as ALA treatment, which was evidenced by restored redox homeostasis and mitochondrial metabolism, finally inhibited myocardial injury. In conclusion, the cardioprotective role of ALA against DOX cardiotoxicity was dependent on PDK4-mediated regulation of oxidative stress and mitochondria metabolism.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated and used during current study are available from the corresponding author on reasonable request.

Change history

References

  1. Carvalho, F. S., Burgeiro, A., Garcia, R., Moreno, A. J., Carvalho, R. A., & Oliveira, P. J. (2014). Doxorubicin-induced cardiotoxicity: From bioenergetic failure and cell death to cardiomyopathy. Medical Research Reviews,34(1), 106–135. https://doi.org/10.1002/med.21280

    Article  CAS  Google Scholar 

  2. Lipshultz, S. E., Franco, V. I., Miller, T. L., Colan, S. D., & Sallan, S. E. (2015). Cardiovascular disease in adult survivors of childhood cancer. Annual Review Medicine,66, 161–176. https://doi.org/10.1146/annurev-med-070213-054849

    Article  CAS  Google Scholar 

  3. Paulus, W. J., & Tschope, C. (2013). A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. Journal of American College Cardiology,62(4), 263–271. https://doi.org/10.1016/j.jacc.2013.02.092

    Article  Google Scholar 

  4. Wenningmann, N., Knapp, M., Ande, A., Vaidya, T. R., & Ait-Oudhia, S. (2019). Insights into doxorubicin-induced cardiotoxicity: molecular mechanisms, preventive strategies, and early monitoring. Molecular Pharmacology.,96(2), 219–232. https://doi.org/10.1124/mol.119.115725

    Article  CAS  PubMed  Google Scholar 

  5. Renu, K., AbilashTirupathi, V. G. P. B., & Arunachalam, S. (2018). Molecular mechanism of doxorubicin-induced cardiomyopathy: An update. European Journal of Pharmacology,818, 241–253. https://doi.org/10.1016/j.ejphar.2017.10.043

    Article  CAS  PubMed  Google Scholar 

  6. Govender, J., Loos, B., Marais, E., & Engelbrecht, A. M. (2014). Mitochondrial catastrophe during doxorubicin-induced cardiotoxicity: A review of the protective role of melatonin. Journal of Pineal Research,57(4), 367–380. https://doi.org/10.1111/jpi.12176

    Article  CAS  PubMed  Google Scholar 

  7. Carvalho, R. A., Sousa, R. P., Cadete, V. J., Lopaschuk, G. D., Palmeira, C. M., Bjork, J. A., & Wallace, K. B. (2010). Metabolic remodeling associated with subchronic doxorubicin cardiomyopathy. Toxicology,270(2–3), 92–98. https://doi.org/10.1016/j.tox.2010.01.019

    Article  CAS  PubMed  Google Scholar 

  8. Rochette, L., Ghibu, S., Muresan, A., & Vergely, C. (2015). Alpha-lipoic acid: Molecular mechanisms and therapeutic potential in diabetes. Canadian Journal of Physiology and Pharmacology,93(12), 1021–1027. https://doi.org/10.1139/cjpp-2014-0353

    Article  CAS  PubMed  Google Scholar 

  9. Kalivendi, S. V., Kotamraju, S., Zhao, H., Joseph, J., & Kalyanaraman, B. (2001). Doxorubicin-induced apoptosis is associated with increased transcription of endothelial nitric-oxide synthase. Effect of antiapoptotic antioxidants and calcium. Journal of Biological Chemistry,276(50), 47266–47276. https://doi.org/10.1074/jbc.M106829200

    Article  CAS  PubMed  Google Scholar 

  10. Wallace, K. B., Sardao, V. A., & Oliveira, P. J. (2020). Mitochondrial determinants of doxorubicin-induced cardiomyopathy. Circulation Research,126(7), 926–941. https://doi.org/10.1161/CIRCRESAHA.119.314681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Koleini, N., Nickel, B. E., Edel, A. L., Fandrich, R. R., Ravandi, A., & Kardami, E. (2019). Oxidized phospholipids in doxorubicin-induced cardiotoxicity. Chemico-Biological Interactions,303, 35–39. https://doi.org/10.1016/j.cbi.2019.01.032

    Article  CAS  PubMed  Google Scholar 

  12. Ziegler, D. (2004). Thioctic acid for patients with symptomatic diabetic polyneuropathy: A critical review. Treatments in Endocrinology,3(3), 173–189. https://doi.org/10.2165/00024677-200403030-00005

    Article  CAS  PubMed  Google Scholar 

  13. Henriksen, E. J. (2006). Exercise training and the antioxidant alpha-lipoic acid in the treatment of insulin resistance and type 2 diabetes. Free Radical Biology and Medicine,40(1), 3–12. https://doi.org/10.1016/j.freeradbiomed.2005.04.002

    Article  CAS  PubMed  Google Scholar 

  14. Salehi, B., Berkay, Y. Y., Antika, G., Boyunegmez, T. T., Fawzi, M. M., Lobine, D., Akram, M., Riaz, M., Capanoglu, E., & Sharopov, F. (2019). Insights on the use of alpha-lipoic acid for therapeutic purposes. Biomolecules. https://doi.org/10.3390/biom9080356

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li, W., Yin, L., Sun, X., Wu, J., Dong, Z., Hu, K., Sun, A., & Ge, J. (2020). Alpha-lipoic acid protects against pressure overload-induced heart failure via ALDH2-dependent Nrf1-FUNDC1 signaling. Cell Death and Diseases,11(7), 599. https://doi.org/10.1038/s41419-020-02805-2

    Article  CAS  Google Scholar 

  16. Packer, L., & Cadenas, E. (2011). Lipoic acid: Energy metabolism and redox regulation of transcription and cell signaling. Journal of Clinical Biochemistry and Nutrition,48(1), 26–32. https://doi.org/10.3164/jcbn.11-005FR

    Article  CAS  PubMed  Google Scholar 

  17. Ng, F., & Tang, B. L. (2014). Pyruvate dehydrogenase complex (PDC) export from the mitochondrial matrix. Molecular Membrane Biology,31(7–8), 207–210. https://doi.org/10.3109/09687688.2014.987183

    Article  CAS  PubMed  Google Scholar 

  18. Gudiksen, A., & Pilegaard, H. (2017). PGC-1alpha and fasting-induced PDH regulation in mouse skeletal muscle. Physiological Reports. https://doi.org/10.14814/phy2.13222

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tian, L., Wu, D., Dasgupta, A., Chen, K. H., Mewburn, J., Potus, F., Lima, P. D. A., Hong, Z., Zhao, Y. Y., & Hindmarch, C. C. T. (2020). Epigenetic metabolic reprogramming of right ventricular fibroblasts in pulmonary arterial hypertension: A pyruvate dehydrogenase kinase-dependent shift in mitochondrial metabolism promotes right ventricular fibrosis. Circulation Research,126(12), 1723–1745. https://doi.org/10.1161/CIRCRESAHA.120.316443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tareen, S. H., Kutmon, M., Arts, I. C., de Kok, T. M., Evelo, C. T., & Adriaens, M. E. (2019). Logical modelling reveals the PDC-PDK interaction as the regulatory switch driving metabolic flexibility at the cellular level. Genes and Nutrition,14, 27. https://doi.org/10.1186/s12263-019-0647-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sugden, M. C., & Holness, M. J. (2003). Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. American Journal of Physiology and Endocrinology Metabolism,284(5), E855-862. https://doi.org/10.1152/ajpendo.00526.2002

    Article  CAS  PubMed  Google Scholar 

  22. Ackers-Johnson, M., Li, P. Y., Holmes, A. P., O’Brien, S. M., Pavlovic, D., & Foo, R. S. (2016). A simplified, langendorff-free method for concomitant isolation of viable cardiac myocytes and nonmyocytes from the adult mouse heart. Circulation Research,119(8), 909–920. https://doi.org/10.1161/CIRCRESAHA.116.309202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dudek, M., Bednarski, M., Bilska, A., Iciek, M., Sokolowska-Jezewicz, M., Filipek, B., & Wlodek, L. (2008). The role of lipoic acid in prevention of nitroglycerin tolerance. European Journal Pharmacology,591(1–3), 203–210. https://doi.org/10.1016/j.ejphar.2008.06.073

    Article  CAS  Google Scholar 

  24. Packer, L., Witt, E. H., & Tritschler, H. J. (1995). Alpha-lipoic acid as a biological antioxidant. Free Radical Biology and Medicine,19(2), 227–250. https://doi.org/10.1016/0891-5849(95)00017-r

    Article  CAS  PubMed  Google Scholar 

  25. He, L., Liu, B., Dai, Z., Zhang, H. F., Zhang, Y. S., Luo, X. J., Ma, Q. L., & Peng, J. (2012). Alpha lipoic acid protects heart against myocardial ischemia-reperfusion injury through a mechanism involving aldehyde dehydrogenase 2 activation. European Journal Pharmacology,678(1–3), 32–38. https://doi.org/10.1016/j.ejphar.2011.12.042

    Article  CAS  Google Scholar 

  26. Wang, J., Wang, H., Hao, P., Xue, L., Wei, S., Zhang, Y., & Chen, Y. (2011). Inhibition of aldehyde dehydrogenase 2 by oxidative stress is associated with cardiac dysfunction in diabetic rats. Molecular Medicine,17(3–4), 172–179. https://doi.org/10.2119/molmed.2010.00114

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, L., Zou, J., Chai, E., Qi, Y., & Zhang, Y. (2014). Alpha-lipoic acid attenuates cardiac hypertrophy via downregulation of PARP-2 and subsequent activation of SIRT-1. European Journal of Pharmacology,744, 203–210. https://doi.org/10.1016/j.ejphar.2014.09.037

    Article  CAS  PubMed  Google Scholar 

  28. Mohajeri, M., & Sahebkar, A. (2018). Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Critical Reviews in Oncology/Hematology,122, 30–51. https://doi.org/10.1016/j.critrevonc.2017.12.005

    Article  PubMed  Google Scholar 

  29. Songbo, M., Lang, H., Xinyong, C., Bin, X., Ping, Z., & Liang, S. (2019). Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicology Letter,307, 41–48. https://doi.org/10.1016/j.toxlet.2019.02.013

    Article  CAS  Google Scholar 

  30. Nebigil, C. G., & Desaubry, L. (2018). Updates in anthracycline-mediated cardiotoxicity. Frontiers in Pharmacology,9, 1262. https://doi.org/10.3389/fphar.2018.01262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Solmonson, A., & DeBerardinis, R. J. (2018). Lipoic acid metabolism and mitochondrial redox regulation. Journal of Biological Chemistry,293(20), 7522–7530. https://doi.org/10.1074/jbc.TM117.000259

    Article  CAS  PubMed  Google Scholar 

  32. Toker, A., & Newton, A. C. (2000). Cellular signaling: Pivoting around PDK-1. Cell,103(2), 185–188. https://doi.org/10.1016/s0092-8674(00)00110-0

    Article  CAS  PubMed  Google Scholar 

  33. Wang, X., Shen, X., Yan, Y., & Li, H. (2021). Pyruvate dehydrogenase kinases (PDKs): an overview toward clinical applications. Bioscience Reports. https://doi.org/10.1042/BSR20204402

  34. Sugden, M. C., & Holness, M. J. (2006). Mechanisms underlying regulation of the expression and activities of the mammalian pyruvate dehydrogenase kinases. Archives Physiology and Biochemistry,112(3), 139–149. https://doi.org/10.1080/13813450600935263

    Article  CAS  Google Scholar 

  35. Harris, R. A., Huang, B., & Wu, P. (2001). Control of pyruvate dehydrogenase kinase gene expression. Advances in Enzyme Regulation,41, 269–288. https://doi.org/10.1016/s0065-2571(00)00020-0

    Article  CAS  PubMed  Google Scholar 

  36. Woolbright, B. L., Rajendran, G., Harris, R. A., & Taylor, J. A., 3rd. (2019). Metabolic flexibility in cancer: Targeting the pyruvate dehydrogenase kinase: pyruvate dehydrogenase axis. Molecular Cancer Therapeutics,18(10), 1673–1681. https://doi.org/10.1158/1535-7163.MCT-19-0079

    Article  CAS  PubMed  Google Scholar 

  37. Harris, R. A., Bowker-Kinley, M. M., Huang, B., & Wu, P. (2002). Regulation of the activity of the pyruvate dehydrogenase complex. Advances in Enzyme Regulation,42, 249–259. https://doi.org/10.1016/s0065-2571(01)00061-9

    Article  CAS  PubMed  Google Scholar 

  38. Smolle, M., Prior, A. E., Brown, A. E., Cooper, A., Byron, O., & Lindsay, J. G. (2006). A new level of architectural complexity in the human pyruvate dehydrogenase complex. Journal of Biological Chemistry,281(28), 19772–19780. https://doi.org/10.1074/jbc.M601140200

    Article  CAS  PubMed  Google Scholar 

  39. Kolobova, E., Tuganova, A., Boulatnikov, I., & Popov, K. M. (2001). Regulation of pyruvate dehydrogenase activity through phosphorylation at multiple sites. Biochemical Journal,358(Pt 1), 69–77. https://doi.org/10.1042/0264-6021:3580069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Saunier, E., Benelli, C., & Bortoli, S. (2016). The pyruvate dehydrogenase complex in cancer: An old metabolic gatekeeper regulated by new pathways and pharmacological agents. International Journal of Cancer,138(4), 809–817. https://doi.org/10.1002/ijc.29564

    Article  CAS  PubMed  Google Scholar 

  41. Ferriero, R., Iannuzzi, C., Manco, G., & Brunetti-Pierri, N. (2015). Differential inhibition of PDKs by phenylbutyrate and enhancement of pyruvate dehydrogenase complex activity by combination with dichloroacetate. Journal of Inherited Metabolic Disease,38(5), 895–904. https://doi.org/10.1007/s10545-014-9808-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the support of Zhejiang Provincial Research Projects of Medical and Healthy Industries (grant nos. 2020KY424 and 2021KY485).

Funding

This work was supported by Zhejiang Provincial Research Projects of Medical and Healthy Industries (grant nos. 2020KY424 and 2021KY485).

Author information

Authors and Affiliations

Authors

Contributions

FG and JJ performed the formal analysis and wrote the original draft. HL supervised the study and validated the data. HM reviewed and edited the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Hui Mao.

Ethics declarations

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical Approval

The study was approved by the Institutional Animal Care and Use Committee (IACUC) of Hangzhou Medical College (Reference no: HMC.NO.2020-98).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Handling Editor: Y. James Kang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s12012-023-09791-9"

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, F., Jin, J., Li, H. et al. RETRACTED ARTICLE: Alpha-Lipoic Acid Protects Against Doxorubicin-Induced Cardiotoxicity by Regulating Pyruvate Dehydrogenase Kinase 4. Cardiovasc Toxicol 22, 879–891 (2022). https://doi.org/10.1007/s12012-022-09766-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-022-09766-2

Keywords

Navigation