Skip to main content

Advertisement

Log in

Azithromycin Attenuates Fibroblast Growth Factors Induced Vascular Endothelial Growth Factor Via p38MAPK Signaling in Human Airway Smooth Muscle Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The airways in asthma and COPD are characterized by an increase in airway smooth muscle (ASM) mass and bronchial vascular changes associated with increased expression of pro-angiogenic growth factors, such as fibroblast growth factors (FGF-1 and FGF-2) and vascular endothelial growth factor (VEGF). We investigated the contribution of FGF-1/-2 in VEGF production in ASM cells and assessed the influence of azithromycin and dexamethasone and their underlying signaling mechanisms. Growth-synchronized human ASM cells were pre-treated with MAPK inhibitors, U0126 for ERK1/2MAPK and SB239063 for p38MAPK as well as with dexamethasone or azithromycin, 30 min before incubation with FGF-1 or FGF-2. Expression of VEGF (VEGF-A, VEGF121, and VEGF165) was assessed by quantitative PCR, VEGF release by ELISA and MAPK phosphorylation by Western blotting. Both FGF-1 and FGF-2 significantly induced mRNA levels of VEGF-A, VEGF121, and VEGF165. The VEGF protein release was increased 1.8-fold (FGF-1) and 5.5-fold (FGF-2) as compared to controls. Rapid transient increase in ERK1/2MAPK and p38MAPK phosphorylation and subsequent release of VEGF from FGF-1 or FGF-2-treated ASM cells were inhibited by respective blockers. Furthermore, azithromycin and dexamethasone significantly reduced both the VEGF release and the activation of p38MAPK pathway in response to FGF-1 or FGF-2 treatment. Our Results demonstrate that FGF-1 and FGF-2 up-regulate VEGF production via ERK1/2MAPK and p38MAPK pathways. Both azithromycin and dexamethasone elicited their anti-angiogenic effects via p38MAPK pathway in vitro, thereby suggesting a possible therapeutic approach to tackle VEGF-mediated vascular remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zanini, A., Chetta, A., Imperatori, A. S., Spanevello, A., & Olivieri, D. (2010). The role of the bronchial microvasculature in the airway remodeling in asthma and COPD. Respiratory Research, 11, 132.

    Article  PubMed  Google Scholar 

  2. Carmeliet, P. (2003). Angiogenesis in health and disease. Nature Medicine, 9(6), 653–660.

    Article  PubMed  CAS  Google Scholar 

  3. Hashimoto, M., Tanaka, H., & Abe, S. (2005). Quantitative analysis of bronchial wall vascularity in the medium and small airways of patients with asthma and COPD. Chest, 127(3), 965–972.

    Article  PubMed  Google Scholar 

  4. Kranenburg, A. R., Willems-Widyastuti, A., Mooi, W. J., Saxena, P. R., Sterk, P. J., de Boer, W. I., et al. (2005). Chronic obstructive pulmonary disease is associated with enhanced bronchial expression of FGF-1, FGF-2, and FGFR-1. Journal of Pathology, 206(1), 28–38.

    Article  PubMed  CAS  Google Scholar 

  5. Kranenburg, A. R., de Boer, W. I., Alagappan, V. K., Sterk, P. J., & Sharma, H. S. (2005). Enhanced bronchial expression of vascular endothelial growth factor and receptors (Flk-1 and Flt-1) in patients with chronic obstructive pulmonary disease. Thorax, 60(2), 106–113.

    Article  PubMed  CAS  Google Scholar 

  6. Walters, E. H., Reid, D., Soltani, A., & Ward, C. (2008). Angiogenesis: A potentially critical part of remodeling in chronic airway diseases? Pharmacology and Therapeutics, 118(1), 128–137.

    Article  PubMed  CAS  Google Scholar 

  7. Kanazawa, H., Asai, K., Hirata, K., & Yoshikawa, J. (2003). Possible effects of vascular endothelial growth factor in the pathogenesis of chronic obstructive pulmonary disease. American Journal of Medicine, 114(5), 354–358.

    Article  PubMed  CAS  Google Scholar 

  8. Feltis, B. N., Wignarajah, D., Zheng, L., Ward, C., Reid, D., Harding, R., et al. (2006). Increased vascular endothelial growth factor and receptors: Relationship to angiogenesis in asthma. American Journal of Respiratory and Critical Care Medicine, 173(11), 1201–1207.

    Article  PubMed  CAS  Google Scholar 

  9. Ferrara, N. (2004). Vascular endothelial growth factor: Basic science and clinical progress. Endocrine Reviews, 25(4), 581–611.

    Article  PubMed  CAS  Google Scholar 

  10. Alagappan, V. K., McKay, S., Widyastuti, A., Garrelds, I. M., Bogers, A. J., Hoogsteden, H. C., et al. (2005). Proinflammatory cytokines upregulate mRNA expression and secretion of vascular endothelial growth factor in cultured human airway smooth muscle cells. Cell Biochemistry and Biophysics, 43(1), 119–129.

    Article  PubMed  CAS  Google Scholar 

  11. Hoshino, M., Takahashi, M., & Aoike, N. (2001). Expression of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin immunoreactivity in asthmatic airways and its relationship to angiogenesis. Journal of Allergy and Clinical Immunology, 107(2), 295–301.

    Article  PubMed  CAS  Google Scholar 

  12. Shute, J. K., Solic, N., Shimizu, J., McConnell, W., Redington, A. E., & Howarth, P. H. (2004). Epithelial expression and release of FGF-2 from heparan sulphate binding sites in bronchial tissue in asthma. Thorax, 59(7), 557–562.

    Article  PubMed  CAS  Google Scholar 

  13. Buczek-Thomas, J. A., Lucey, E. C., Stone, P. J., Chu, C. L., Rich, C. B., Carreras, I., et al. (2004). Elastase mediates the release of growth factors from lung in vivo. American Journal of Respiratory Cell and Molecular Biology, 31(3), 344–350.

    Article  PubMed  CAS  Google Scholar 

  14. Duarte, M., Kolev, V., Soldi, R., Kirov, A., Graziani, I., Oliveira, S. M., et al. (2006). Thrombin induces rapid PAR1-mediated non-classical FGF1 release. Biochemical and Biophysical Research Communications, 350(3), 604–609.

    Article  PubMed  CAS  Google Scholar 

  15. Friesel, R. E., & Maciag, T. (1995). Molecular mechanisms of angiogenesis: Fibroblast growth factor signal transduction. The FASEB Journal, 9(10), 919–925.

    CAS  Google Scholar 

  16. Kanazawa, H., & Yoshikawa, T. (2007). Up-regulation of thrombin activity induced by vascular endothelial growth factor in asthmatic airways. Chest, 132(4), 1169–1174.

    Article  PubMed  CAS  Google Scholar 

  17. Shao, M. X., & Nadel, J. A. (2005). Neutrophil elastase induces MUC5AC mucin production in human airway epithelial cells via a cascade involving protein kinase C, reactive oxygen species, and TNF-alpha-converting enzyme. Journal of Immunology, 175(6), 4009–4016.

    CAS  Google Scholar 

  18. Feltis, B. N., Wignarajah, D., Reid, D. W., Ward, C., Harding, R., & Walters, E. H. (2007). Effects of inhaled fluticasone on angiogenesis and vascular endothelial growth factor in asthma. Thorax, 62(4), 314–319.

    Article  PubMed  CAS  Google Scholar 

  19. Zanini, A., Chetta, A., Saetta, M., Baraldo, S., Castagnetti, C., Nicolini, G., et al. (2009). Bronchial vascular remodeling in patients with COPD and its relationship with inhaled steroid treatment. Thorax, 64(12), 1019–1024.

    Article  PubMed  CAS  Google Scholar 

  20. Chung, K. F., Caramori, G., & Adcock, I. M. (2009). Inhaled corticosteroids as combination therapy with beta-adrenergic agonists in airways disease: Present and future. European Journal of Clinical Pharmacology, 65(9), 853–871.

    Article  PubMed  CAS  Google Scholar 

  21. Marwick, J. A., Kirkham, P. A., Stevenson, C. S., Danahay, H., Giddings, J., Butler, K., et al. (2004). Cigarette smoke alters chromatin remodeling and induces proinflammatory genes in rat lungs. American Journal of Respiratory Cell and Molecular Biology, 31(6), 633–642.

    Article  PubMed  CAS  Google Scholar 

  22. Vanaudenaerde, B. M., Wuyts, W. A., Geudens, N., Dupont, L. J., Schoofs, K., Smeets, S., et al. (2007). Macrolides inhibit IL17-induced IL8 and 8-isoprostane release from human airway smooth muscle cells. American Journal of Transplantation, 7(1), 76–82.

    Article  PubMed  CAS  Google Scholar 

  23. Seemungal, T. A., Wilkinson, T. M., Hurst, J. R., Perera, W. R., Sapsford, R. J., & Wedzicha, J. A. (2008). Long-term erythromycin therapy is associated with decreased chronic obstructive pulmonary disease exacerbations. American Journal of Respiratory and Critical Care Medicine, 178(11), 1139–1147.

    Article  PubMed  CAS  Google Scholar 

  24. Simpson, J. L., Powell, H., Boyle, M. J., Scott, R. J., & Gibson, P. G. (2008). Clarithromycin targets neutrophilic airway inflammation in refractory asthma. American Journal of Respiratory and Critical Care Medicine, 177(2), 148–155.

    Article  PubMed  CAS  Google Scholar 

  25. Wang, X. F., Cui, J. Z., Prasad, S. S., & Matsubara, J. A. (2005). Altered gene expression of angiogenic factors induced by calcium-mediated dissociation of retinal pigment epithelial cells. Investigative Ophthalmology & Visual Science, 46(4), 1508–1515.

    Article  Google Scholar 

  26. Giulietti, A., Overbergh, L., Valckx, D., Decallonne, B., Bouillon, R., & Mathieu, C. (2001). An overview of real-time quantitative PCR: Applications to quantify cytokine gene expression. Methods, 25(4), 386–401.

    Article  PubMed  CAS  Google Scholar 

  27. Redington, A. E., Roche, W. R., Madden, J., Frew, A. J., Djukanovic, R., Holgate, S. T., et al. (2001). Basic fibroblast growth factor in asthma: Measurement in bronchoalveolar lavage fluid basally and following allergen challenge. Journal of Allergy and Clinical Immunology, 107(2), 384–387.

    Article  PubMed  CAS  Google Scholar 

  28. Wang, J. K., Gao, G., & Goldfarb, M. (1994). Fibroblast growth factor receptors have different signaling and mitogenic potentials. Molecular and Cellular Biology, 14(1), 181–188.

    PubMed  CAS  Google Scholar 

  29. Ma, J. Y., Medicherla, S., Kerr, I., Mangadu, R., Protter, A. A., & Higgins, L. S. (2008). Selective p38alpha mitogen-activated protein kinase inhibitor attenuates lung inflammation and fibrosis in IL-13 transgenic mouse model of asthma. Journal of Asthma and Allergy, 1, 31–44.

    Article  PubMed  CAS  Google Scholar 

  30. Williams, A. S., Issa, R., Durham, A., Leung, S. Y., Kapoun, A., Medicherla, S., et al. (2008). Role of p38 mitogen-activated protein kinase in ozone-induced airway hyperresponsiveness and inflammation. European Journal of Pharmacology, 600(1–3), 117–122.

    Article  PubMed  CAS  Google Scholar 

  31. Volpi, G., Facchinetti, F., Moretto, N., Civelli, M., & Patacchini, R. (2011). Cigarette smoke and alpha, beta-unsaturated aldehydes elicit VEGF release through the p38 MAPK pathway in human airway smooth muscle cells and lung fibroblasts. British Journal of Pharmacology, 163(3), 649–661.

    Article  PubMed  CAS  Google Scholar 

  32. Rovina, N., Papapetropoulos, A., Kollintza, A., Michailidou, M., Simoes, D. C., Roussos, C., et al. (2007). Vascular endothelial growth factor: An angiogenic factor reflecting airway inflammation in healthy smokers and in patients with bronchitis type of chronic obstructive pulmonary disease? Respiratory Research, 8, 53.

    Article  PubMed  Google Scholar 

  33. Clark, A. R., Martins, J. R., & Tchen, C. R. (2008). Role of dual specificity phosphatases in biological responses to glucocorticoids. Journal of Biological Chemistry, 283(38), 25765–25769.

    Article  PubMed  CAS  Google Scholar 

  34. Vos, R., Vanaudenaerde, B. M., Verleden, S. E., De Vleeschauwer, S. I., Willems-Widyastuti, A., Van Raemdonck, D. E., et al. (2011). A randomised controlled trial of azithromycin to prevent chronic rejection after lung transplantation. European Respiratory Journal, 37(1), 164–172.

    Article  PubMed  CAS  Google Scholar 

  35. Verleden, G. M., Vanaudenaerde, B. M., Dupont, L. J., & Van Raemdonck, D. E. (2006). Azithromycin reduces airway neutrophilia and interleukin-8 in patients with bronchiolitis obliterans syndrome. American Journal of Respiratory and Critical Care Medicine, 174(5), 566–570.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

GMV is holder of the Glaxo Smith Kline (Belgium) chair in respiratory pharmacology at the Katholieke Universiteit Leuven (KULeuven), and is supported by the Research Foundation Flanders (FWO): G.0643.08 and G.0723.10 and by the onderzoeksfonds KULeuven: OT10/050. BMV is a senior research fellow of the FWO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geert M. Verleden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willems-Widyastuti, A., Vanaudenaerde, B.M., Vos, R. et al. Azithromycin Attenuates Fibroblast Growth Factors Induced Vascular Endothelial Growth Factor Via p38MAPK Signaling in Human Airway Smooth Muscle Cells. Cell Biochem Biophys 67, 331–339 (2013). https://doi.org/10.1007/s12013-011-9331-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9331-0

Keywords

Navigation